Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631900

RESUMO

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Assuntos
Frataxina , Ataxia de Friedreich , Succinatos , Animais , Camundongos , Butiratos , Frataxina/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Glucose , Microglia/metabolismo
2.
Macromol Biosci ; 24(5): e2300458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38198834

RESUMO

This study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.e., E = 12 MPa, UTS = 1.5 MPa), suitable for the GBR application in the oral surgery. The AESO-SO bio-resin proves to be cytocompatible, allowing for fibroblast cells proliferation (viability at 72 h > 97%), without inducing severe inflammatory response when co-cultured with macrophages, as demonstrated by cytokine antibody arrays, that is anyway resolved in the first 24 h. Moreover, accelerated degradation tests prove that the bio-resin is biodegradable in hydrolytic environments.


Assuntos
Regeneração Óssea , Impressão Tridimensional , Óleo de Soja , Regeneração Óssea/efeitos dos fármacos , Óleo de Soja/química , Humanos , Procedimentos Cirúrgicos Bucais/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Tecidual Guiada/métodos , Camundongos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
3.
iScience ; 26(10): 107713, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37701569

RESUMO

Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNA-seq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes-like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management.

4.
Mol Metab ; 76: 101783, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517520

RESUMO

OBJECTIVE: Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS: We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS: Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Lipocalina-2/genética , Macrófagos , Esclerose Múltipla/patologia , Sistema Nervoso Central
5.
Cell Metab ; 34(4): 533-548.e12, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305295

RESUMO

Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT.


Assuntos
Tecido Adiposo Marrom , Termogênese , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
6.
Redox Biol ; 36: 101633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863211

RESUMO

Low-protein/high-carbohydrate (LPHC) diet has been suggested to promote metabolic health and longevity in adult humans and animal models. However, the complex molecular underpinnings of how LPHC diet leads to metabolic benefits remain elusive. Through a multi-layered approach, here we observed that LPHC diet promotes an energy-dissipating response consisting in the parallel recruitment of canonical and non-canonical (muscular) thermogenic systems in subcutaneous white adipose tissue (sWAT). In particular, we measured Ucp1 induction in association with up-regulation of actomyosin components and several Serca (Serca1, Serca2a, Serca2b) ATPases. In beige adipocytes, we observed that AMPK activation is responsible for transducing the amino acid lowering in an enhanced fat catabolism, which sustains both Ucp1-and Serca-dependent energy dissipation. Limiting AMPK activation counteracts the expression of brown fat and muscular genes, including Ucp1 and Serca, as well as mitochondrial oxidative genes. We observed that mitochondrial reactive oxygen species are the upstream molecules controlling AMPK-mediated metabolic rewiring in amino acid-restricted beige adipocytes. Our findings delineate a novel metabolic phenotype of responses to amino acid shortage, which recapitulates some of the benefits of cool temperature in sWAT. In conclusion, this highlights LPHC diet as a valuable and practicable strategy to prevent metabolic diseases through the enhancement of mitochondrial oxidative metabolism and the recruitment of different energy dissipating routes in beige adipocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Termogênese , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Carboidratos , Dieta , Metabolismo Energético , Humanos , Gordura Subcutânea/metabolismo
7.
Chemotherapy ; 64(3): 138-145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639786

RESUMO

BACKGROUND: PD-L1 is a membrane protein with inhibitory effects on immune responses, whose expression has been correlated with high aggressiveness and the propensity of melanoma to metastasize. The nitrobenzoxadiazole (NBD) NBDHEX and its analog MC3181 are endowed with strong antitumor activity towards melanoma and a significant ability to reduce its adhesion and invasiveness. Therefore, we investigated whether PD-L1 status could affect cell sensitivity to the cytotoxic effects of NBDs. We then evaluated the effects of NBDHEX on PD-L1 expression and autophagy in melanoma cells. We used the BRAF-mutated A375 melanoma cell line and an A375 variant population enriched for PD-L1+ cells as a model. The cytotoxic effects of NBDs were evaluated in comparison to those of the BRAF inhibitor vemurafenib and the autophagy inhibitor chloroquine. METHODS: The effect of NBDHEX on autophagy was determined by measuring LC3-II and p62 protein levels by Western blot. The cytotoxic activity of the compounds was evaluated by sulforhodamine B assay. PD-L1 expression and plasma membrane localization were analyzed by FACS and Western blot analysis. RESULTS: NBDHEX behaves as a late-autophagy inhibitor in A375 melanoma cells, as previously found in other tumor cell lines. NBDHEX and MC3181 showed strong and comparable cytotoxic activity in both parental and PD-L1+ A375 cells, with IC50 values in the sub-micromolar range. Conversely, cells sorted for high PD-L1 expression had lower sensitivity to both the BRAF inhibitor vemurafenib and the autophagy inhibitor chloroquine. NBDHEX treatment did not change the total expression and cell surface localization of PD-L1 in both parental and PD-L1+ A375 cells. CONCLUSIONS: Our data suggest that NBDs may represent a promising treatment strategy for melanoma with elevated PD-L1 expression.


Assuntos
Autofagia/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Glutationa Transferase/antagonistas & inibidores , Nitrobenzenos/farmacologia , Oxidiazóis/farmacologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Cloroquina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/metabolismo , Humanos , Melanoma , Nitrobenzenos/química , Oxidiazóis/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Vemurafenib/farmacologia
8.
Endocrine ; 65(3): 542-549, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31327157

RESUMO

PURPOSE: In the earliest stages of diabetic retinopathy (DR), a dysfunction of Müller cells, characterized by high levels of glial fibrillary acidic protein (GFAP), and aquaporins (AQP), has been observed. Although chronic hyperglycemia causes the activation of Müller cells, the effect of glycemic fluctuations is yet unknown. The aim of the study was to analyze the impact of glucose variability on rat retinal Müller cells (rMC-1) adapted to either normal (5 mM) or high (25 mM) glucose levels. METHODS: rMC-1 were cultured in a medium containing either 5 mM (N cells) or 25 mM of glucose (H cells) and then incubated for 96 h in a medium containing (a) low glucose (either 1-3 or 5 mM), (b) basal glucose (either 5 or 25 mM), (c) high glucose (either 25 or 45 mM), (d) basal and high glucose alternated every 24 h; (e) low- and high glucose alternated every 24 h; (f) basal glucose with episodes of low glucose for 30 min twice a day. Müller cells activation was evaluated by measuring the levels of GFAP, AQP4, and phospho-active extracellular signal-regulated kinase (pERK). RESULTS: Under both basal and high glucose concentrations rMC-1 were viable, but their response to glucose excursions was different. In N cells kept under normal (5 mM) glucose, a significant glial activation was measured not only in response to constant high glucose but also to alternating low/high glucose. In H cells, adapted to 25 mM glucose, a significant response was observed only after exposition to a lower (5 mM) glucose concentration. CONCLUSION: Our results highlight Müller cells activation in response to glucose variability and a different susceptibility depending on the basal glucose conditions.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Glucose/metabolismo , Retina/efeitos dos fármacos , Animais , Aquaporina 4/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Retinopatia Diabética , Células Ependimogliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Glucose/farmacologia , Hiperglicemia/fisiopatologia , Neuroglia/efeitos dos fármacos , Ratos , Retina/metabolismo
9.
J Enzyme Inhib Med Chem ; 34(1): 1131-1139, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31169043

RESUMO

The antitumor agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (1) is a potent inhibitor of GSTP1-1, a glutathione S-transferase capable of inhibiting apoptosis by binding to JNK1 and TRAF2. We recently demonstrated that, unlike its parent compound, the benzoyl ester of 1 (compound 3) exhibits negligible reactivity towards GSH, and has a different mode of interaction with GSTP1-1. Unfortunately, 3 is susceptible to rapid metabolic hydrolysis. In an effort to improve the metabolic stability of 3, its ester group has been replaced by an amide, leading to N-(6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexyl)benzamide (4). Unlike 3, compound 4 was stable to human liver microsomal carboxylesterases, but retained the ability to disrupt the interaction between GSTP1-1 and TRAF2 regardless of GSH levels. Moreover, 4 exhibited both a higher stability in the presence of GSH and a greater cytotoxicity towards cultured A375 melanoma cells, in comparison with 1 and its analog 2. These findings suggest that 4 deserves further preclinical testing.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Cell Physiol ; 234(9): 15885-15897, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741416

RESUMO

Glutathione transferases (GSTs) play an important role in retinal pathophysiology. Within this family, the GSTP isoform is known as an endogenous regulator of cell survival and proliferation pathways and of cellular responses to oxidative stress. In the present study we silenced GSTP in R28 cells, a retinal precursor cell line with markers of both glial and neuronal origin, and obtained stable clones which were viable and, unexpectedly, characterized by a more neuronal phenotype. The degree of neuronal differentiation was inversely correlated with GSTP residual expression levels. The clone with the lowest expression of GSTP showed metabolic reprogramming, a more favorable redox status and, despite its neuronal phenotype, a sensitivity to glutamate and 4-hydroxynonenal toxicity comparable to that of control cells. Altogether, our evidence shows that near full depletion of GSTP in retinal precursor cells, triggers neuronal differentiation and prosurvival metabolic changes.

11.
Oncotarget ; 8(48): 83407-83418, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137352

RESUMO

Mitochondrial dysfunction, inflammation and senescence-like features are observed in adipose depots in aging and obesity. Herein, we evaluated how maternal high calorie diet (HCD) may impact on subcutaneous adipose tissue (sAT) of the newborn mice. Adult C57BL/6J mice were randomly divided in three groups: normal calorie diet (NCD), HCD and HCD supplemented with niacin 8 weeks before mating. Mothers and pups were then sacrificed and metabolic and molecular analyses were carried out on sAT. HCD induced mitochondria dysfunction in mothers without inflammation and senescence, whereas in pups we also revealed the occurrence of senescent phenotype. The mitochondrial dysfunction-associated senescence in pups was accompanied by a drop in NAD+/NADH ratio and alteration in the NAD+-dependent enzymes PARP1 and SIRT1. Importantly, maternal dietary supplementation with niacin during gestation and lactation restrained NAD+/NADH decrease imposed by HCD limiting inflammatory cytokine production and senescence phenotype in newborn sAT. Given the fundamental role of sAT in buffering nutrient overload and avoiding pathogenic ectopic fat accumulation, we suggest that NAD+ boosting strategies during maternal HCD could be helpful in limiting sAT dysfunction in newborn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA