Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769235

RESUMO

Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , MicroRNAs , Humanos , Animais , Síndrome de Down/complicações , Síndrome de Down/genética , Trissomia , Cardiopatias Congênitas/genética , MicroRNAs/genética , Matriz Extracelular/genética , Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças
2.
Front Genet ; 13: 824922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356434

RESUMO

Down syndrome is a neurodevelopmental disorder frequently characterized by other developmental defects, such as congenital heart disease. Analysis of gene expression profiles of hearts from trisomic fetuses have shown upregulation of extracellular matrix (ECM) genes. The aim of this work was to identify genes on chromosome 21 potentially responsible for the upregulation of ECM genes and to pinpoint any functional consequences of this upregulation. By gene set enrichment analysis of public data sets, we identified the transcription factor RUNX1, which maps to chromosome 21, as a possible candidate for regulation of ECM genes. We assessed that approximately 80% of ECM genes overexpressed in trisomic hearts have consensus sequences for RUNX1 in their promoters. We found that in human fetal fibroblasts with chromosome 21 trisomy there is increased expression of both RUNX1 and several ECM genes, whether located on chromosome 21 or not. SiRNA silencing of RUNX1 reduced the expression of 11 of the 14 ECM genes analyzed. In addition, collagen IV, an ECM protein secreted in high concentrations in the culture media of trisomic fibroblasts, was modulated by RUNX1 silencing. Attenuated expression of RUNX1 increased the migratory capacity of trisomic fibroblasts, which are characterized by a reduced migratory capacity compared to euploid controls.

3.
Biology (Basel) ; 10(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209429

RESUMO

BACKGROUND: The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS: Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS: NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS: Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.

4.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365535

RESUMO

Mitochondria are organelles that mainly control energy conversion in the cell. In addition, they also participate in many relevant activities, such as the regulation of apoptosis and calcium levels, and other metabolic tasks, all closely linked to cell viability. Functionality of mitochondria appears to depend upon their network architecture that may dynamically pass from an interconnected structure with long tubular units, to a fragmented one with short separate fragments. A decline in mitochondrial quality, which presents itself as an altered structural organization and a function of mitochondria, has been observed in Down syndrome (DS), as well as in aging and in age-related pathologies. This review provides a basic overview of mitochondrial dynamics, from fission/fusion mechanisms to mitochondrial homeostasis. Molecular mechanisms determining the disruption of the mitochondrial phenotype in DS and aging are discussed. The impaired activity of the transcriptional co-activator PGC-1α/PPARGC1A and the hyperactivation of the mammalian target of rapamycin (mTOR) kinase are emerging as molecular underlying causes of these mitochondrial alterations. It is, therefore, likely that either stimulating the PGC-1α activity or inhibiting mTOR signaling could reverse mitochondrial dysfunction. Evidence is summarized suggesting that drugs targeting either these pathways or other factors affecting the mitochondrial network may represent therapeutic approaches to improve and/or prevent the effects of altered mitochondrial function. Overall, from all these studies it emerges that the implementation of such strategies may exert protective effects in DS and age-related diseases.


Assuntos
Envelhecimento/metabolismo , Síndrome de Down/etiologia , Síndrome de Down/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Biomarcadores , Suscetibilidade a Doenças , Síndrome de Down/tratamento farmacológico , Homeostase , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos
5.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554962

RESUMO

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Linhagem da Célula/genética , Cromatina/metabolismo , Desmetilação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Ligação Proteica , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell Stem Cell ; 24(1): 166-182.e13, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30581079

RESUMO

We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Placa Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Adulto , Animais , Células Sanguíneas , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Masculino , Camundongos , Placa Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Células-Tronco Pluripotentes/metabolismo , Adulto Jovem
7.
Nature ; 558(7711): E4, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769714

RESUMO

In the originally published version of this Letter, ref. 43 was erroneously provided twice. In the 'Estimation of relative cell-type-specific composition of AML samples' section in the Methods, the citation to ref. 43 after the GEO dataset GSE24759 is correct. However, in the 'Mice' section of the Methods, the citation to ref. 43 after 'TAMERE' should have been associated with a new reference1. The original Letter has been corrected online (with the new reference included as ref. 49).

8.
Nature ; 553(7689): 515-520, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342133

RESUMO

The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genes myc/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia/genética , Leucemia/patologia , Família Multigênica/genética , Animais , Linfócitos B/citologia , Diferenciação Celular , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Regulação para Baixo , Feminino , Deleção de Genes , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células Mieloides/citologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Deleção de Sequência , Análise de Sobrevida , Fatores de Transcrição/metabolismo
9.
Cell ; 169(5): 807-823.e19, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28479188

RESUMO

Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.


Assuntos
Células-Tronco Hematopoéticas/citologia , Transdução de Sinais , Tretinoína/farmacologia , Vitamina A/administração & dosagem , Animais , Vias Biossintéticas , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Dieta , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Poli I-C/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Estresse Fisiológico , Vitamina A/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologia
10.
Cell ; 164(4): 668-80, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871632

RESUMO

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Assuntos
Células-Tronco Embrionárias/citologia , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Blastocisto/metabolismo , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Development ; 143(1): 24-34, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26586221

RESUMO

The process by which pluripotent cells incorporate into host embryos is of interest to investigate cell potency and cell fate decisions. Previous studies suggest that only a minority of the embryonic stem cell (ESC) inoculum contributes to the adult chimaera. How incoming cells are chosen for integration or elimination remains unclear. By comparing a heterogeneous mix of undifferentiated and differentiating ESCs (serum/LIF) with more homogeneous undifferentiated culture (2i/LIF), we examine the role of cellular heterogeneity in this process. Time-lapse ex vivo imaging revealed a drastic elimination of serum/LIF ESCs during early development in comparison with 2i/LIF ESCs. Using a fluorescent reporter for naive pluripotency (Rex1-GFP), we established that the acutely eliminated serum/LIF ESCs had started to differentiate. The rejected cells were apparently killed by apoptosis. We conclude that a selection process exists by which unwanted differentiating cells are eliminated from the embryo. However, occasional Rex1(-) cells were able to integrate. Upregulation of Rex1 occurred in a proportion of these cells, reflecting the potential of the embryonic environment to expedite diversion from differentiation priming to enhance the developing embryonic epiblast.


Assuntos
Blastocisto/citologia , Quimera/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Animais , Apoptose/fisiologia , Diferenciação Celular , Células Cultivadas , Quimera/genética , Transferência Embrionária , Camundongos , Camundongos Endogâmicos C57BL , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo
12.
EMBO J ; 35(3): 356-68, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26675138

RESUMO

The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/ß-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and ß-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while ß-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/ß-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Endoderma/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo , Ativinas/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Camundongos
13.
J Exp Med ; 211(5): 769-79, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24752302

RESUMO

The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4-TRIF-p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress.


Assuntos
Regulação da Expressão Gênica/imunologia , Granzimas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Transdução de Sinais/imunologia , Estresse Fisiológico/fisiologia , Animais , Apoptose/efeitos dos fármacos , Medula Óssea/fisiologia , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Primers do DNA/genética , Tratamento Farmacológico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fluoruracila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Granzimas/deficiência , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
14.
Appl Environ Microbiol ; 77(15): 5428-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21666013

RESUMO

Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o-xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.


Assuntos
Oxigenases/genética , Oxigenases/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Pseudomonas/enzimologia , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação , Mutação , Oxirredução , Pseudomonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
Arch Biochem Biophys ; 505(1): 48-59, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20920460

RESUMO

Bacterial multicomponent monooxygenases (BMMs) are members of a wide family of diiron enzymes that use molecular oxygen to hydroxylate a variety of aromatic compounds. The presence of genes encoding for accessory proteins not involved in catalysis and whose role is still elusive, is a common feature of the gene clusters of several BMMs, including phenol hydroxylases and several soluble methane monooxygenases. In this study we have expressed, purified, and partially characterized the accessory component PHK of the phenol hydroxylase from Pseudomonas sp. OX1, a bacterium able to degrade several aromatic compounds. The phenol hydroxylase (ph) gene cluster was expressed in Escherichia coli/JM109 cells in the absence and in the presence of the phk gene. The presence of the phk gene lead to an increase in the hydroxylase activity of whole recombinant cells with phenol. PHK was assessed for its ability to interact with the active hydroxylase complex. Our results show that PHK is neither involved in the catalytic activity of the phenol hydroxylase complex nor required for the assembly of apo-hydroxylase. Our results suggest instead that this component may be responsible for enhancing iron incorporation into the active site of the apo-hydroxylase.


Assuntos
Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Pseudomonas/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Bacterianos , Hidroxilação , Ferro/metabolismo , Oxigenases de Função Mista/isolamento & purificação , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Carbohydr Res ; 343(4): 674-84, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18258222

RESUMO

The Gram-negative bacterium Pseudomonas sp. OX1, previously known as Pseudomonas stutzeri OX1, is endowed with a high metabolic versatility. In fact, it is able to utilize a wide range of toxic organic compounds as the only source of carbon and energy for growth. It has been recently observed that, while growing on a glucose-containing liquid medium, Pseudomonas sp. OX1 can reduce azo dyes, ubiquitous pollutants particularly resistant to chemical and physical degradation, with this azoreduction being a process able to generate enough energy to sustain bacterial survival. We have found that, under these conditions, modifications in the primary structure of the O-specific polysaccharide (OPS) within the lipopolysaccharides occur, leading to remarkable changes both in the monosaccharide composition and in the architecture of the repeating unit, with respect to the polysaccharide produced in the absence of azo dyes. In the present paper, we present the complete structure of this O-specific polysaccharide, whose repeating unit is the following: [Formula: see text] This structure is totally different from the one determined from Pseudomonas sp. OX1 grown on rich medium.


Assuntos
Compostos Azo/química , Compostos Azo/metabolismo , Benzenossulfonatos/química , Benzenossulfonatos/metabolismo , Antígenos O/biossíntese , Antígenos O/química , Pseudomonas/química , Pseudomonas/metabolismo , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Appl Environ Microbiol ; 70(4): 2211-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066815

RESUMO

Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway, which processes these intermediates down to molecules that enter the citric acid cycle. Bacterial multicomponent monooxygenases (BMMs) are a family of enzymes divided into six distinct groups. Most bacterial genomes code for only one BMM, but a few cases (3 out of 31) of genomes coding for more than a single monooxygenase have been found. One such case is the genome of Pseudomonas stutzeri OX1, in which two different monooxygenases have been found, phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO). We have already demonstrated that ToMO is an oligomeric protein whose subunits transfer electrons from NADH to oxygen, which is eventually incorporated into the aromatic substrate. However, no molecular data are available on the structure and on the mechanism of action of PH. To understand the metabolic significance of the association of two similar enzymatic activities in the same microorganism, we expressed and characterized this novel phenol hydroxylase. Our data indicate that the PH P component of PH transfers electrons from NADH to a subcomplex endowed with hydroxylase activity. Moreover, a regulatory function can be suggested for subunit PH M. Data on the specificity and the kinetic constants of ToMO and PH strongly support the hypothesis that coupling between the two enzymatic systems optimizes the use of nonhydroxylated aromatic molecules by the draining effect of PH on the product(s) of oxidation catalyzed by ToMO, thus avoiding phenol accumulation.


Assuntos
Oxigenases de Função Mista/metabolismo , Oxigenases/metabolismo , Pseudomonas stutzeri/enzimologia , Sequência de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Genes Bacterianos , Hidrocarbonetos Aromáticos/metabolismo , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxigenases/química , Oxigenases/genética , Subunidades Proteicas , Pseudomonas stutzeri/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
Eur J Biochem ; 269(22): 5689-99, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12423369

RESUMO

This paper describes the cloning of the genes coding for each component of the complex of toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, their expression, purification and characterization. Moreover, the reconstitution of the active complex from the recombinant subunits has been obtained, and the functional role of each component in the electron transfer from the electron donor to molecular oxygen has been determined. The coexpression of subunits B, E and A leads to the formation of a subcomplex, named H, with a quaternary structure (BEA)2, endowed with hydroxylase activity. Tomo F component is an NADH oxidoreductase. The purified enzyme contains about 1 mol of FAD, 2 mol of iron, and 2 mol of acid labile sulfide per mol of protein, as expected for the presence of one [2Fe-2S] cluster, and exhibits a typical flavodoxin absorption spectrum. Interestingly, the sequence of the protein does not correspond to that previously predicted on the basis of DNA sequence. We have shown that this depends on minor errors in the gene sequence that we have corrected. C component is a Rieske-type ferredoxin, whose iron and acid labile sulfide content is in agreement with the presence of one [2Fe-2S] cluster. The cluster is very sensitive to oxygen damage. Mixtures of the subcomplex H and of the subunits F, C and D are able to oxidize p-cresol into 4-methylcathecol, thus demonstrating the full functionality of the recombinant subunits as purified. Finally, experimental evidence is reported which strongly support a model for the electron transfer. Subunit F is the first member of an electron transport chain which transfers electrons from NADH to C, which tunnels them to H subcomplex, and eventually to molecular oxygen.


Assuntos
Oxigenases/química , Oxigenases/isolamento & purificação , Fenômenos Bioquímicos , Bioquímica , Cromatografia em Gel , Ditionita/química , Transporte de Elétrons , Elétrons , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Vetores Genéticos , Ferro/metabolismo , Espectrometria de Massas , NAD/química , Plasmídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA