Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(7): 104555, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35769884

RESUMO

Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.

2.
Nat Commun ; 11(1): 4896, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994414

RESUMO

Natural biomolecules such as peptides and DNA can dynamically self-organize into diverse hierarchical structures. Mimicry of this homopolymer self-assembly using synthetic systems has remained limited but would be advantageous for the design of adaptive bio/nanomaterials. Here, we report both experiments and simulations on the dynamic network self-assembly and subsequent collapse of the synthetic homopolymer poly(propylene sulfone). The assembly is directed by dynamic noncovalent sulfone-sulfone bonds that are susceptible to solvent polarity. The hydration history, specified by the stepwise increase in water ratio within lower polarity water-miscible solvents like dimethylsulfoxide, controls the homopolymer assembly into crystalline frameworks or uniform nanostructured hydrogels of spherical, vesicular, or cylindrical morphologies. These electrostatic hydrogels have a high affinity for a wide range of organic solutes, achieving >95% encapsulation efficiency for hydrophilic small molecules and biologics. This system validates sulfone-sulfone bonding for dynamic self-assembly, presenting a robust platform for controllable gelation, nanofabrication, and molecular encapsulation.


Assuntos
Hidrogéis/síntese química , Polipropilenos/síntese química , Sulfonas/química , Alcenos/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Polipropilenos/química , Eletricidade Estática
3.
J Am Chem Soc ; 140(23): 7206-7212, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29771509

RESUMO

The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF6-, Cl-), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield ΦF = 1.00. Furthermore, unlike its ExBIPY2+ and TzBIPY2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 µM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 64+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me2TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.


Assuntos
Corantes Fluorescentes/química , Compostos Macrocíclicos/química , Compostos de Piridínio/química , Tiazóis/química , Animais , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Luz , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/efeitos da radiação , Compostos Macrocíclicos/toxicidade , Camundongos , Microscopia Confocal/métodos , Modelos Químicos , Compostos de Piridínio/síntese química , Compostos de Piridínio/efeitos da radiação , Compostos de Piridínio/toxicidade , Teoria Quântica , Células RAW 264.7 , Tiazóis/síntese química , Tiazóis/efeitos da radiação , Tiazóis/toxicidade
4.
J Control Release ; 282: 90-100, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-29601932

RESUMO

Polymer vesicles, i.e. polymersomes (PS), present unique nanostructures with an interior aqueous core that can encapsulate multiple independent cargos concurrently. However, the sequential release of such co-loaded actives remains a challenge. Here, we report the rational design and synthesis of oxidation-responsive shell-crosslinked PS with capability for the controlled, sequential release of encapsulated hydrophilic molecules and hydrogels. Amphiphilic brush block copolymers poly(oligo(ethylene glycol) methyl ether methacrylate)-b-poly(oligo(propylene sulfide) methacrylate) (POEGMA-POPSMA) were prepared to fabricate PS via self-assembly in aqueous solution. As a type of unique drug delivery vehicle, the interior of the PS was co-loaded with hydrophilic molecules and water-soluble poly(N-isopropylacrylamide) (PNIPAM) conjugates. Due to the thermosensitivity of PNIPAM, PNIPAM conjugates within the PS aqueous interior underwent a phase transition to form hydrogels in situ when the temperature was raised above the lower critical solution temperature (LCST) of PNIPAM. Via control of the overall shell permeability by oxidation, we realized the sequential release of two water-soluble payloads based on the assumption that hydrogels have much smaller membrane permeability than that of molecular cargos. The ability to control the timing of release of molecular dyes and PNIPAM-based hydrogels was also observed within live cells. Furthermore, leakage of hydrogels from the PS was effectively alleviated in comparison to molecular cargos, which would facilitate intracellular accumulation and prolonged retention of hydrogels within the cell cytoplasm. Thus, we demonstrate that the integration of responsive hydrogels into PS with crosslinkable membranes provides a facile and versatile technique to control the stability and release of water-soluble cargos for drug delivery purposes.


Assuntos
Resinas Acrílicas/química , Preparações de Ação Retardada/química , Metacrilatos/química , Polietilenoglicóis/química , Polímeros/química , Sulfetos/química , Linhagem Celular , Corantes/administração & dosagem , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Oxirredução , Solubilidade , Água/química
5.
Nanoscale ; 10(11): 5078-5088, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29255814

RESUMO

Polymeric bicontinuous nanospheres (BCNs) that are analogous to lipid cubosomes possess high internal surface area and porosity that can accommodate the loading of a wide range of hydrophobic and hydrophilic molecules for diverse applications. Self-assembly of BCNs has been reported using complex amphiphilic polymeric structures, with co-solvent dispersion being the only documented method of formation. Here, we report a simple amphiphilic diblock copolymer, poly(ethylene glycol)17-block-poly(propylene sulfide)75 (PEG17-bl-PPS75), to form BCNs using the rapid and scalable technique of flash nanoprecipitation (FNP). Dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryoTEM) verified low polydispersity and the formation of bicontinuous structures with internal aqueous channels, respectively. Small-angle X-ray scattering (SAXS) confirmed a primitive cubic (Im3m) internal organization for BCNs assembled by FNP. Both hydrophobic and hydrophilic molecules were effectively loaded into BCNs via FNP, and encapsulated payloads were found to release in controlled manner in aqueous solutions. Due to the oxidation-sensitivity of PPS, biologically relevant concentrations of reactive oxygen species could trigger payload release on demand. BCNs were found to be non-toxic and endocytosed by phagocytic cells. Furthermore, an in vitro functional assay showed BCNs co-loaded with antigen ovalbumin and adjuvant monophosphoryl lipid A (MPL) to promote peptide/MHCI surface presentation by dendritic cells, a critical step for vaccine formulations during immunization. In conclusion, FNP supports the facile and scalable assembly and loading of PEG-bl-PPS BCNs, making them an attractive nanoscale delivery vehicle for both hydrophilic and hydrophobic molecules.

6.
Cell Mol Bioeng ; 10(5): 357-370, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28989540

RESUMO

INTRODUCTION: Intracellular delivery is a key step for many applications in medicine and for investigations into cellular function. This is particularly true for immunotherapy, which often requires controlled delivery of antigen and adjuvants to the cytoplasm of immune cells. Due to the complex responses generated by the stimulation of diverse immune cell populations, it is critical to monitor which cells are targeted during treatment. To address this issue, we have engineered an immunotheranostic polymersome delivery system that fluorescently marks immune cells following intracellular delivery. METHODS: N-(3-bromopropyl)phthalimide end-capped poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS-PI) was synthesized by anionic ring opening polymerization and linked with PEG-PPS-NH2 via a perylene bisimide (PBI) bridge to form a tetrablock copolymer (PEG-PPS-PBI-PPS-PEG). Block copolymers were assembled into polymersomes by thin film hydration in phosphate buffered saline and characterized by dynamic light scattering, cryogenic electron microscopy and fluorescence spectroscopy. Polymersomes were injected subcutaneously into the backs of mice, and draining lymph nodes were extracted for flow cytometric analysis of cellular uptake and disassembly. RESULTS: Modular self-assembly of tetrablock / diblock copolymers in aqueous solutions induced π-π stacking of the PBI linker that both red-shifted and quenched the PBI fluorescence. Reactive oxygen species within the endosomes of phagocytic immune cell populations oxidized the PPS blocks, which disassembled the polymersomes for dequenching and shifting of the PBI fluorescence from 640 nm to 550 nm emission. Lymph node resident macrophages and dendritic cells were found to increase in 550 nm emission over the course of 3 days by flow cytometry. CONCLUSIONS: Immunotheranostic polymersomes present a versatile platform to probe the contributions of specific cell populations during the elicitation of controlled immune responses. Flanking PBI with two oxidation-sensitive hydrophobic PPS blocks enhanced π stacking and introduced a mechanism for disrupting π-π interactions to shift PBI fluorescence in response to oxidative conditions. Shifts from red (640 nm) to green (550 nm) fluorescence occurred in the presence of physiologically relevant concentrations of reactive oxygen species and could be observed within phagocytic cells both in vitro and in vivo.

7.
ACS Nano ; 10(12): 11290-11303, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27935698

RESUMO

Atherosclerosis, a leading cause of heart disease, results from chronic vascular inflammation that is driven by diverse immune cell populations. Nanomaterials may function as powerful platforms for diagnostic imaging and controlled delivery of therapeutics to inflammatory cells in atherosclerosis, but efficacy is limited by nonspecific uptake by cells of the mononuclear phagocytes system (MPS). MPS cells located in the liver, spleen, blood, lymph nodes, and kidney remove from circulation the vast majority of intravenously administered nanomaterials regardless of surface functionalization or conjugation of targeting ligands. Here, we report that nanostructure morphology alone can be engineered for selective uptake by dendritic cells (DCs), which are critical mediators of atherosclerotic inflammation. Employing near-infrared fluorescence imaging and flow cytometry as a multimodal approach, we compared organ and cellular level biodistributions of micelles, vesicles (i.e., polymersomes), and filomicelles, all assembled from poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-bl-PPS) block copolymers with identical surface chemistries. While micelles and filomicelles were respectively found to associate with liver macrophages and blood-resident phagocytes, polymersomes were exceptionally efficient at targeting splenic DCs (up to 85% of plasmacytoid DCs) and demonstrated significantly lower uptake by other cells of the MPS. In a mouse model of atherosclerosis, polymersomes demonstrated superior specificity for DCs (p < 0.005) in atherosclerotic lesions. Furthermore, significant differences in polymersome cellular biodistributions were observed in atherosclerotic compared to naïve mice, including impaired targeting of phagocytes in lymph nodes. These results present avenues for immunotherapies in cardiovascular disease and demonstrate that nanostructure morphology can be tailored to enhance targeting specificity.


Assuntos
Aterosclerose/terapia , Células Dendríticas , Nanoestruturas , Animais , Inflamação , Ligantes , Camundongos , Micelas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA