Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microorganisms ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004740

RESUMO

Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur crystalline-free acid (2-CCFA) treatment on the fecal microbiota and on the quantities of second-and third-generation cephalosporin, fluoroquinolone, and macrolide resistance genes in Holstein-Friesian dairy cows in the southwestern United States. Across three dairy farms, 124 matched pairs of cows were enrolled in a longitudinal study. Following the product label regimen, CCFA was administered on days 0 and 3 to cows diagnosed with postpartum metritis. Healthy cows were pair-matched based on lactation number and calving date. Fecal samples were collected on days 0, 6, and 16 and pooled in groups of 4 (n = 192) by farm, day, and treatment group for community DNA extraction. The characterization of community DNA included real-time PCR (qPCR) to quantify the following antibiotic resistance genes: blaCMY-2, blaCTX-M, mphA, qnrB19, and the highly conserved 16S rRNA back-calculated to gene copies per gram of feces. Additionally, 16S rRNA amplicon sequencing and metagenomics analyses were used to determine differences in bacterial community composition by treatment, day, and farm. Overall, blaCMY-2 gene copies per gram of feces increased significantly (p ≤ 0.05) in the treated group compared to the untreated group on day 6 and remained elevated on day 16. However, blaCTX-M, mphA, and qnrB19 gene quantities did not differ significantly (p ≥ 0.05) between treatment groups, days, or farms, suggesting a cephamycinase-specific enhancement in cows on these farms. Perhaps unexpectedly, 16S rRNA amplicon metagenomic analyses showed that the fecal bacterial communities from treated animals on day 6 had significantly greater (p ≤ 0.05) alpha and beta diversity than the untreated group. Two-dose ceftiofur treatment in dairy cows with metritis elevates cephamycinase gene quantities among all fecal bacteria while paradoxically increasing microbial diversity.

2.
Transbound Emerg Dis ; 69(6): 3582-3596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36189839

RESUMO

Biological agents as weapons of agro-crime or agro-terrorism pose threats to peace and economic stability. Such agents pre-exist worldwide as hazards, adversely affecting animal health, as well as imposing substantial burdens on many nations. Few studies have quantified the global risks and vulnerabilities of countries and regions to potential terrorist or criminal operations targeting animal health. We present here a risk-based mutual insurance premium framework for animal health outcomes built upon the World Organisation for Animal Health (WOAH) quantitative risk assessment paradigm. Our objective was to generate dimensionless and relative domain indices related to release and exposure for several biological factors, as well as to assess the preparedness and response ability of each country. We also considered disease-specific measures relating to pathogens, targeted animal populations, the ongoing disease situation, within- and among-country peace or conflict, disease-specific control measures, and the availability of technical tools and personnel for successful disease management. National economic, political, and research and development competencies were used to assess each WOAH Member's potential for resilience. We formulated indices of vulnerability for 25 WOAH Members selected from five worldwide regions; initially, against four transboundary infectious animal diseases that target diverse animal species. We developed these indices using variables obtained from public databases arising from multiple intergovernmental organizations. Subsequently, we compared the relative vulnerability indices among countries for each given disease using three different index building methods: arithmetic mean, distance matrix, and principal component analysis (PCA). The PCA-based approach provided the greatest ability to discriminate among the components and among countries and regions. Due to its transparency and reliance on publicly available datasets, the risk premium framework proposed herein may readily be adjusted by policymakers and agencies and utilized to improve risk management strategies against agro-crime or agro-terror events, as well as for unintentional disease introductions.


Assuntos
Doenças dos Animais , Doenças Transmissíveis , Medição de Risco , Animais , Doenças dos Animais/epidemiologia , Doenças dos Animais/prevenção & controle , Doenças Transmissíveis/veterinária , Saúde Global , Terrorismo , Seguro Saúde
3.
Microorganisms ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208866

RESUMO

The use of antibiotics to treat dairy calves may result in multidrug-resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This study investigated fluoroquinolone and macrolide resistance genes among ESBL-producing E. coli isolated from dairy calves. Fresh fecal samples from 147 dairy calves across three age groups were enriched to select for ESBL-producing E. coli. Plasmid-mediated fluoroquinolone (qnrB), macrolide (mph(A)), and beta-lactam (blaCTX-M groups 1 and 9) resistance genes were identified by PCR and gel electrophoresis in ESBL-producing E. coli. Beta-lactamase variants and antibiotic resistance genes were characterized for eight isolates by whole-genome sequencing. Seventy-one (48.3%) samples were positive for ESBL-producing E. coli, with 159 (70.4%) isolates identified as blaCTX-M variant group 1 and 67 (29.6%) isolates as blaCTX-M variant group 9. Resistance gene mph(A) was more commonly associated with blaCTX-M variant group 1, while resistance gene qnrB was more commonly associated with variant group 9. E. coli growth was quantified on antibiotic media for 30 samples: 10 from each age group. Significantly higher quantities of ceftriaxone-resistant E. coli were present in the youngest calves. Results indicate the dominant blaCTX-M groups present in ESBL-producing E. coli may be associated with additional qnrB or mph(A) resistance genes and ESBL-producing E. coli is found in higher abundance in younger calves.

4.
PLoS One ; 15(9): e0239135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32931522

RESUMO

The rising public health threat of antimicrobial resistance, the influence of food service companies, as well as the overall lack of positive image of using medical products in intensive farming are major drivers curbing antimicrobial use. In the future, government policies may affect practices of antimicrobial use in beef production in feedlots, a prominent current user of antimicrobials in animal agriculture, but also the agricultural industry generating the highest cash receipt in the U.S. Our objective was to estimate the cost effect from the following policies in feedlots: 1) using antimicrobials for disease prevention, control, and treatment; 2) using antimicrobials only for treatment of disease; and 3) not using antimicrobials for any reason. We modelled a typical U.S. feedlot, where high risk cattle may be afflicted by diseases requiring antimicrobial therapy, namely respiratory diseases, liver abscesses and lameness. We calculated the net revenue loss under each policy of antimicrobial use restriction. With moderate disease incidence, the median net revenue loss was $66 and $96 per animal entering the feedlot, for not using antimicrobials for disease prevention and control, or not using any antimicrobials, respectively, compared to using antimicrobials for disease prevention, control, and treatment. Losses arose mainly from an increase of fatality and morbidity rates, almost doubling for respiratory diseases in the case of antimicrobial use restrictions. In the case of antimicrobial use prohibition, decreasing the feeder cattle price by 9%, or alternatively, increasing the slaughter cattle price by 6.3%, would offset the net revenue losses for the feedlot operator. If no alternatives to antimicrobial therapy for prevention, control and treatment of current infectious diseases are implemented, policies that economically incentivize adoption of non-antimicrobial prevention and control strategies for infectious diseases would be necessary to maintain animal welfare and the profitability of beef production while simultaneously curbing antimicrobial use.


Assuntos
Criação de Animais Domésticos/economia , Antibacterianos/normas , Doenças dos Bovinos/tratamento farmacológico , Fazendas/economia , Políticas , Criação de Animais Domésticos/normas , Bem-Estar do Animal/economia , Bem-Estar do Animal/normas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/economia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Simulação por Computador , Efeitos Psicossociais da Doença , Análise Custo-Benefício , Farmacorresistência Bacteriana , Fazendas/normas , Incidência , Modelos Econômicos , Carne Vermelha/economia
5.
Front Vet Sci ; 7: 622495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575279

RESUMO

Introduction: A phenomenon of decreasing antimicrobial resistance (AMR) among fecal bacteria as food animals age has been noted in multiple field studies. We conducted a scoping review to summarize the extent, range, and nature of research activity and the data for the following question: "does AMR among enteric/fecal bacteria predictably shift as animals get older?". Methods: This review followed a scoping review methodology framework. Pertinent literature published up until November 2018 for all animals (except humans) was retrieved using keyword searches in two online databases, namely, PubMed® and the Web of Science™ Core Collection, without filtering publication date, geographic location, or language. Data were extracted from the included studies, summarized, and plotted. Study quality was also assessed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) guidelines for all included papers. Results: The publications with detailed relevant data (n = 62) in food animals, poultry, and dogs were identified. These included longitudinal studies (n = 32), cross-sectional studies of different age groups within one food animal production system or small-animal catchment area (n = 16), and experimental or diet trials (n = 14). A decline in host-level prevalence and/or within-host abundance of AMR among fecal bacteria in production beef, dairy cattle, and swine was reported in nearly two-thirds (65%) of the identified studies in different geographic locations from the 1970's to 2018. Mixed results, with AMR abundance among fecal bacteria either increasing or decreasing with age, have been reported in poultry (broiler chicken, layer, and grow-out turkey) and dogs. Conclusions: Quantitative synthesis of the data suggests that the age-dependent AMR phenomenon in cattle and swine is observed irrespective of geographic location and specific production practices. It is unclear whether the phenomenon predates or is related to antimicrobial drug use. However, almost 50% of the identified studies predate recent changes in antimicrobial drug use policy and regulations in food animals in the United States and elsewhere.

6.
Animals (Basel) ; 10(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877788

RESUMO

Escherichia coli isolates were recovered from clinical specimens of equine patients admitted to the Texas A&M Veterinary Medical Teaching Hospital over a five-year period. Ceftiofur resistance was used as a marker for potential extended-spectrum beta-lactamase (ESBL)-activity, and of the 48 ceftiofur-resistant E. coli isolates, 27.08% (n = 13) were phenotypically ESBL-positive. Conventional PCR analysis followed by the large-scalebla Finder multiplex PCR detected the ESBL genes, CTX-M-1 and SHV, in seven out of the 13 isolates. Moreover, beta-lactamase genes of TEM-1-type, BER-type (AmpC), and OXA-type were also identified. Sequencing of these genes resulted in identification of a novel TEM-1-type gene, called blaTEM-233, and a study is currently underway to determine if this gene confers the ESBL phenotype. Furthermore, this report is the first to have found E. coli ST1308 in horses. This subtype, which has been reported in other herbivores, harbored the SHV-type ESBL gene. Finally, one out of 13 E. coli isolates was PCR-positive for the carbapenemase gene, blaIMP-1 despite the lack of phenotypically proven resistance to imipenem. With the identification of novel ESBL gene variant and the demonstrated expansion of E. coli sequence types in equine patients, this study underscores the need for more investigation of equines as reservoirs for ESBL-producing pathogens.

7.
Front Vet Sci ; 6: 245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380404

RESUMO

Antimicrobial use (AMU) in animal agriculture contributes to the selection of resistant bacteria, potentially constituting a public health threat. To address antimicrobial resistance, public policies set by governments, as well as intra-sectoral approaches, can be implemented. In this paper, we explore how common policy instruments such as regulations, economic incentives, and voluntary agreements could help reduce AMU in beef production. We first describe the structure of the beef supply chain which directly influences the choice of policy instruments. We describe how externalities and imperfect information affect this system. We then discuss how five policy instruments would each perform to achieve a reduction in AMU. Bovine respiratory disease complex (BRD) represents the major driver of AMU in beef production; consequently, reducing its incidence would decrease significantly the amounts of antimicrobials administered. We consider control options for BRD at different stages of the beef supply chain.

8.
J Anim Sci ; 97(1): 424-436, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388223

RESUMO

Effects of supplemental Zn as Zn sulfate on feedlot performance, carcass traits, and antimicrobial resistance were evaluated using 480 crossbred heifers (BW = 385 kg ± 13.08) in a randomized complete block design. Heifers were blocked by BW and randomly assigned within block to diets with 0, 30, 60, or 90 mg supplemental Zn/kg DM. Heifers were housed in dirt-surfaced pens (20 animals per pen; 6 pens per treatment) equipped with fence-line feed bunks and automatic water fountains. Heifers were fed once daily to ensure ad libitum intake. Plasma was collected on day 0 from five randomly selected heifers per pen and repeated on days 63 and 115 to determine plasma Zn concentrations. Random samples of freshly voided feces were collected from the surface of each pen the day of harvest to determine antibiotic resistance. Heifers were transported on day 144 to a commercial abattoir where hot carcass weight (HCW) and incidence of liver abscesses were recorded at harvest and HCW, dressed yield, ribeye area, 12th rib fat, quality and yield grades were recorded after 36 h of refrigeration. Plasma Zn concentration increased (P = 0.02) linearly in response to increasing concentrations of dietary Zn. Final BW and ADG were unaffected by supplementation (P ≥ 0.29). Quantified levels of resistance to ceftriaxone and tetracycline among fecal Escherichia coli were not impacted (P > 0.05) by dietary zinc concentrations. Increasing Zn concentrations tended to decrease (linear effect, P = 0.07) DMI, resulting in a linear (P = 0.03) and tendency for quadratic (P = 0.12) improvement in feed efficiency with increasing Zn concentration. No differences were detected for HCW, dressed yield, ribeye area, 12th rib fat, percentages of carcasses grading Select or Choice, or yield grade (P > 0.53), but added Zn tended to affect percentage of carcasses that graded Prime, peaking at 60 mg/kg added Zn (quadratic effect, P = 0.07). In vitro fermentations were performed using ruminal fluid cultures containing 0, 30, 60, 90, 120, or 150 mg Zn/kg substrate DM to determine impact of Zn on gas production, VFA concentrations, and in vitro DM disappearance (IVDMD). There were no effects of Zn on in vitro gas production, IVDMD, or most VFA (P > 0.15), but isovalerate decreased linearly in response to added Zn (P = 0.05). Supplementing finishing heifers up to 60 mg Zn/kg diet DM improved feed efficiency compared to other treatments.


Assuntos
Antibacterianos/farmacologia , Composição Corporal/efeitos dos fármacos , Bovinos , Farmacorresistência Bacteriana , Sulfato de Zinco/farmacologia , Ração Animal/análise , Animais , Bactérias/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Masculino , Sulfato de Zinco/administração & dosagem
9.
Genes (Basel) ; 9(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340352

RESUMO

Copper is used as an alternative to antibiotics for growth promotion and disease prevention. However, bacteria developed tolerance mechanisms for elevated copper concentrations, including those encoded by the pco operon in Gram-negative bacteria. Using cohorts of weaned piglets, this study showed that the supplementation of feed with copper concentrations as used in the field did not result in a significant short-term increase in the proportion of pco-positive fecal Escherichia coli. The pco and sil (silver resistance) operons were found concurrently in all screened isolates, and whole-genome sequencing showed that they were distributed among a diversity of unrelated E. coli strains. The presence of pco/sil in E. coli was not associated with elevated copper minimal inhibitory concentrations (MICs) under a variety of conditions. As found in previous studies, the pco/sil operons were part of a Tn7-like structure found both on the chromosome or on plasmids in the E. coli strains investigated. Transfer of a pco/sil IncHI2 plasmid from E. coli to Salmonella enterica resulted in elevated copper MICs in the latter. Escherichia coli may represent a reservoir of pco/sil genes transferable to other organisms such as S. enterica, for which it may represent an advantage in the presence of copper. This, in turn, has the potential for co-selection of resistance to antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA