Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3168, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823347

RESUMO

The aim of the present study is to produce flexible, flame-retardant, water-resistant and biodegradable composite materials. The ultimate goal of this research is to develop simple processes for the production of bio-based materials capable of replacing non-degradable substrates in printed circuit board. Cellulose was chosen as a renewable resource, and dissolved in 1-ethyl-3-methylimidazolium acetate ionic liquid to prepare a cellulosic continuous film. Since flame retardancy is an important criterion for electronic device applications and cellulose is naturally flammable, we incorporated ammonium polyphosphate (APP) as a flame-retardant filler to increase the flame retardancy of the produced materials. The developed material achieved a UL-94 HB rating in the flammability test, while the cellulose sample without APP failed the test. Two hydrophobic agents, ethyl 2-cyanoacrylate and trichloro(octadecyl)silane were applied by a simple dip-coating technique to impart hydrophobicity to the cellulose-APP composites. Dynamic mechanical analysis indicated that the mechanical properties of the cellulosic materials were not significantly affected by the addition of APP or the hydrophobic agents. Moreover, the biodegradability of the cellulosic materials containing APP increased owing to the presence of the cellulase enzyme. The hydrophobic coating slightly decreased the biodegradability of cellulose-APP, but it was still higher than that of pure cellulose film.

2.
J Chem Phys ; 158(3): 034901, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681636

RESUMO

In this work, we studied TEMPO-oxidized cellulose nanofibril (OCNF) suspensions in the presence of diverse surfactants. Using a combination of small angle neutron scattering (SANS) and rheology, we compared the physical properties of the suspensions with their structural behavior. Four surfactants were studied, all with the same hydrophobic tail length but different headgroups: hexaethylene glycol mono-n-dodecyl ether (C12EO6, nonionic), sodium dodecyl sulfate (SDS, anionic), cocamidopropyl betaine (CapB, zwitterionic), and dodecyltrimethylammonium bromide (DTAB, cationic). Contrast variation SANS studies using deuterated version of C12EO6 or SDS, or by varying the D2O/H2O ratio of the suspensions (with CapB), allowed focusing only on the structural properties of OCNFs or surfactant micelles. We showed that, in the concentration range studied, for C12EO6, although the nanofibrils are concentrated thanks to an excluded volume effect observed in SANS, the rheological properties of the suspensions are not affected. Addition of SDS or CapB induces gelation for surfactant concentrations superior to the critical micellar concentration (CMC). SANS results show that attractive interactions between OCNFs arise in the presence of these anionic or zwitterionic surfactants, hinting at depletion attraction as the main mechanism of gelation. Finally, addition of small amounts of DTAB (below the CMC) allows formation of a tough gel by adsorbing onto the OCNF surface.


Assuntos
Celulose Oxidada , Tensoativos , Tensoativos/química , Espalhamento a Baixo Ângulo , Dodecilsulfato de Sódio/química
3.
J Colloid Interface Sci ; 627: 1003-1010, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35905582

RESUMO

The replacement of plastic microbeads with biodegradable alternatives is essential due to the environmental persistence of plastics and their accumulation within the human food chain. HYPOTHESIS: Cellulose microbeads could be such alternative, but their production is hindered by the high viscosity of cellulose solutions. It is expected that this viscosity can be harnessed to induce filament thinning of jets of cellulose solutions to create droplets with diameters within the micrometre range, which can then be converted to solid cellulose microbeads via phase inversion. EXPERIMENTS: A 3D printed rotating multi-nozzle system was used to generate jets of cellulose dissolved in solutions of [EMIm][OAc] and DMSO. The jets were subject to Rayleigh breakup to generate droplets which were captured in an ethanol anti-solvent bath, initiating phase-inversion, and resulting in regeneration of the cellulose into beads. FINDINGS: Control of both process (e.g. nozzle dimensions) and operational (e.g. rotational speed and pressure) parameters has allowed suppression of both satellite droplets generation and secondary droplet break-up, and tuning of the filament thinning process. This resulted in the continuous fabrication of cellulose microbeads in the size range 40-500 µm with narrow size distributions. This method can produce beads in size ranges not attainable by existing technologies.


Assuntos
Celulose , Dimetil Sulfóxido , Etanol , Humanos , Microesferas , Plásticos
4.
Langmuir ; 38(11): 3370-3379, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35261240

RESUMO

Electrostatic attractions are essential in any complex formation between the nanofibrils of the opposite charge for a specific application, such as microcapsule production. Here, we used cationized cellulose nanofibril (CCNF)-stabilized Pickering emulsions (PEs) as templates, and the electrostatic interactions were induced by adding oxidized cellulose nanofibrils (OCNFs) at the oil-water interface to form microcapsules (MCs). The oppositely charged cellulose nanofibrils enhanced the solidity of interfaces, allowing the encapsulation of Nile red (NR) in sunflower oil droplets. Microcapsules exhibited a low and controlled release of NR at room temperature. Furthermore, membrane emulsification was employed to scale up the preparation of microcapsules with sunflower oil (SFO) encapsulated by CCNF/OCNF complex networks.


Assuntos
Celulose , Cápsulas , Emulsões , Eletricidade Estática , Óleo de Girassol
5.
PLoS One ; 16(7): e0252660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234363

RESUMO

This study aimed to quantify the influence of clays and partially oxidised cellulose nanofibrils (OCNF) on gelation as well as characterise their physical and chemical interactions. Mixtures of Laponite and montmorillonite clays with OCNF form shear-thinning gels that are more viscous across the entire shear range than OCNF on its own. Viscosity and other rheological properties can be fine-tuned using different types of clay at different concentrations (0.5-2 wt%). Laponite particles are an order of magnitude smaller than those of montmorillonite (radii of 150 Å compared to 2000 Å) and are therefore able to facilitate networking of the cellulose fibrils, resulting in stronger effects on rheological properties including greater viscosity. This work presents a mechanism for modifying rheological properties using renewable and environmentally-friendly nanocellulose and clays which could be used in a variety of industrial products including home and personal care formulations.


Assuntos
Celulose Oxidada/química , Argila/química , Reologia , Elasticidade , Géis , Viscosidade
6.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199769

RESUMO

Thin films of cellulose and cellulose-CaSiO3 composites were prepared using 1-ethyl-3-methylimidazolium acetate (EMIMAc) as the dissolution medium and the composites were regenerated from an anti-solvent. The surface hydrophilicity of the resultant cellulose composites was lowered by coating them with three different hydrophobizing agents, specifically, trichloro(octadecyl)silane (TOS), ethyl 2-cyanoacrylate (E2CA) and octadecylphosphonic acid (ODPA), using a simple dip-coating technique. The prepared materials were subjected to flame retardancy, water barrier, thermal, mechanical and biodegradation properties analyses. The addition of CaSiO3 into the cellulose increased the degradation temperature and flame retardant properties of the cellulose. The water barrier property of cellulose-CaSiO3 composites under long term water exposure completely depends on the nature of the hydrophobic agents used for the surface modification process. All of the cellulose composites behaved mechanically as a pure elastic material with a glassy state from room temperature to 250 °C, and from 20% to 70% relative humidity (RH). The presence of the CaSiO3 filler had no effect on the elastic modulus, but it seemed to increase after the TOS surface treatment. Biodegradability of the cellulose was evaluated by enzyme treatments and the influence of CaSiO3 and hydrophobic agents was also derived.

7.
Langmuir ; 37(23): 6864-6873, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081858

RESUMO

Oil-in-water emulsions have been stabilized by functionalized cellulose nanofibrils bearing either a negative (oxidized cellulose nanofibrils, OCNF) or a positive (cationic cellulose nanofibrils, CCNF) surface charge. The size of the droplets was measured by laser diffraction, while the structure of the shell of the Pickering emulsion droplets was probed using small-angle neutron scattering (SANS), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and rheology measurements. Both OCNF- and CCNF-stabilized emulsions present a very thick shell (>100 nm) comprised of densely packed CNF. OCNF-stabilized emulsions proved to be salt responsive, influencing the droplet aggregation and ultimately the gel properties of the emulsions, while CCNF emulsions, on the other hand, showed very little salt-dependent behavior.

8.
Polymers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808830

RESUMO

Water quality parameters such as salt content and various pH environments can alter the stability of gels as well as their rheological properties. Here, we investigated the effect of various concentrations of NaCl and different pH environments on the rheological properties of TEMPO-oxidised cellulose nanofibril (OCNF) and starch-based hydrogels. Addition of NaCl caused an increased stiffness of the OCNF:starch (1:1 wt%) blend gels, where salt played an important role in reducing the repulsive OCNF fibrillar interactions. The rheological properties of these hydrogels were unchanged at pH 5.0 to 9.0. However, at lower pH (4.0), the stiffness and viscosity of the OCNF and OCNF:starch gels appeared to increase due to proton-induced fibrillar interactions. In contrast, at higher pH (11.5), syneresis was observed due to the formation of denser and aggregated gel networks. Interactions as well as aggregation behaviour of these hydrogels were explored via ζ-potential measurements. Furthermore, the nanostructure of the OCNF gels was probed using small-angle X-ray scattering (SAXS), where the SAXS patterns showed an increase of slope in the low-q region with increasing salt concentration arising from aggregation due to the screening of the surface charge of the fibrils.

9.
Biomacromolecules ; 22(2): 754-762, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33404227

RESUMO

The extensive use of antibiotics over the last decades is responsible for the emergence of multidrug-resistant (MDR) microorganisms that are challenging health care systems worldwide. The use of alternative antimicrobial materials could mitigate the selection of new MDR strains by reducing antibiotic overuse. This paper describes the design of enzyme-based antimicrobial cellulose beads containing a covalently coupled glucose oxidase from Aspergillus niger (GOx) able to release antimicrobial concentrations of hydrogen peroxide (H2O2) (≈ 1.8 mM). The material preparation was optimized to obtain the best performance in terms of mechanical resistance, shelf life, and H2O2 production. As a proof of concept, agar inhibition halo assays (Kirby-Bauer test) against model pathogens were performed. The two most relevant factors affecting the bead functionalization process were the degree of oxidation and the pH used for the enzyme binding process. Slightly acidic conditions during the functionalization process (pH 6) showed the best results for the GOx/cellulose system. The functionalized beads inhibited the growth of all the microorganisms assayed, confirming the release of sufficient antimicrobial levels of H2O2. The maximum inhibition efficiency was exhibited toward Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), although significant inhibitory effects toward methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus were also observed. These enzyme-functionalized cellulose beads represent an inexpensive, sustainable, and biocompatible antimicrobial material with potential use in many applications, including the manufacturing of biomedical products and additives for food preservation.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Celulose , Escherichia coli , Peróxido de Hidrogênio , Testes de Sensibilidade Microbiana , Staphylococcus aureus
10.
Nanoscale Adv ; 3(8): 2252-2260, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133751

RESUMO

Ionogels offer huge potential for a number of applications including wearable electronics and soft sensors. However, their synthesis has been limited and often relies on non-renewable or non-biocompatible components. Here we present a novel two-component ionogel made using just deep eutectic solvents (DESs) and cellulose. DESs offer a non-volatile alternative to hydrogels with highly tuneable properties including conductivity and solvation of compounds with widely varying hydrophobicity. DESs can be easily made from cheap, biodegradable and biocompatible components. This research presents the characterisation of a series of soft conductive gels made from deep eutectic solvents (DESs), specifically choline chloride-urea and choline chloride-glycerol, with the sole addition of TEMPO-oxidised cellulose nanofibrils (OCNF). A more liquid-like rather than gel-like conductive material could be made by using the DES betaine-glycerol. OCNF are prepared from sustainable sources, and are non-toxic, and mild on the skin, forming gels without the need for surfactants or other gelling agents. These DES-OCNF gels are shear thinning with conductivities up to 1.7 mS cm-1 at ∼26 °C. Given the thousands of possible DESs, this system offers unmatched tunability and customisation for properties such as viscosity, conductivity, and yield behaviour.

11.
ACS Sustain Chem Eng ; 9(49): 16617-16626, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024251

RESUMO

The continuous fabrication via membrane emulsification of stable microcapsules using renewable, biodegradable biopolymer wall materials keratin and chitosan is reported here for the first time. Microcapsule formation was based on opposite charge interactions between keratin and chitosan, which formed polyelectrolyte complexes when solutions were mixed at pH 5.5. Interfacial complexation was induced by transfer of keratin-stabilized primary emulsion droplets to chitosan solution, where the deposition of chitosan around droplets formed a core-shell structure. Capsule formation was demonstrated both in batch and continuous systems, with the latter showing a productivity up to 4.5 million capsules per minute. Keratin-chitosan microcapsules (in the 30-120 µm range) released less encapsulated nile red than the keratin-only emulsion, whereas microcapsules cross-linked with glutaraldehyde were stable for at least 6 months, and a greater amount of cross-linker was associated with enhanced dye release under the application of force due to increased shell brittleness. In light of recent bans involving microplastics in cosmetics, applications may be found in skin-pH formulas for the protection of oils or oil-soluble compounds, with a possible mechanical rupture release mechanism (e.g., rubbing on skin).

12.
Biomacromolecules ; 21(12): 5315-5322, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202126

RESUMO

The use of hydrogen peroxide-releasing enzymes as a component to produce alternative and sustainable antimicrobial materials has aroused interest in the scientific community. However, the preparation of such materials requires an effective enzyme binding method that often involves the use of expensive and toxic chemicals. Here, we describe the development of an enzyme-based hydrogen peroxide-producing regenerated cellulose film (RCF) in which a cellobiohydrolase (TrCBHI) and a cellobiose dehydrogenase (MtCDHA) were efficiently adsorbed, 90.38 ± 2.2 and 82.40 ± 5.7%, respectively, without making use of cross-linkers. The enzyme adsorption kinetics and binding isotherm experiments showed high affinity of the proteins possessing cellulose-binding modules for RCF, suggesting that binding on regenerated cellulose via specific interactions can be an alternative method for enzyme immobilization. Resistance to compression and porosity at a micrometer scale were found to be tunable by changing cellulose concentration prior to film regeneration. The self-degradation process, triggered by stacking TrCBHI and MtCDHA (previously immobilized onto separate RCF), produced 0.15 nmol/min·cm2 of H2O2. Moreover, the production of H2O2 was sustained for at least 24 h reaching a concentration of ∼2 mM. The activity of MtCDHA immobilized on RCF was not affected by reuse for at least 3 days (1 cycle/day), suggesting that no significant enzyme leakage occurred in that timeframe. In the material herein designed, cellulose (regenerated from a 1-ethyl-3-methylimidazolium acetate/dimethyl sulfoxide (DMSO) solution) serves both as support and substrate for the immobilized enzymes. The sequential reaction led to the production of H2O2 at a micromolar-millimolar level revealing the potential use of the material as a self-degradable antimicrobial agent.


Assuntos
Celulose , Peróxido de Hidrogênio , Adsorção , Celulose 1,4-beta-Celobiosidase , Enzimas Imobilizadas
13.
Soft Matter ; 16(20): 4887-4896, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32424387

RESUMO

In this work, we investigated the effect of adding surfactant mixtures on the rheological properties of TEMPO-oxidized cellulose nanofibril (OCNF) saline dispersions. Three surfactant mixtures were studied: cocamidopropyl betaine (CAPB)/sodium dodecyl sulfate (SDS), which forms wormlike micelles (WLMs); cocamidopropylamine oxide (CAPOx)/SDS, which forms long rods; and CAPB/sodium lauroyl sarcosinate (SLS), which forms spherical micelles. The presence of micelles in these surfactant mixtures, independent of their morphology, leads to an increase of tan δ, making the gels less solid-like, therefore acting as a plasticizer. WLMs were able to suppress strain stiffening normally observed in OCNF gels at large strains. OCNF/WLM gels have lower G' values than OCNF gels while the other micellar morphologies have a reduced impact on G'. The presence of unconnected micelles leads to increased dissipative deformation in OCNF gels without affecting the connectivity of the fibrils, while the presence of entangled micelles interferes with the OCNF network.

14.
ACS Appl Polym Mater ; 2(3): 1213-1221, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32296779

RESUMO

Through charge-driven interfacial complexation, we produced millimeter-sized spheroidal hydrogels (SH) with a core-shell structure allowing long-term stability in aqueous media. The SH were fabricated by extruding, dropwise, a cationic cellulose nanofibril (CCNF) dispersion into an oppositely charged poly(acrylic acid) (PAA) bath. The SH have a solid-like CCNF-PAA shell, acting as a semipermeable membrane, and a liquid-like CCNF suspension in the core. Swelling behavior of the SH was dependent on the osmotic pressure of the aging media. Swelling could be suppressed by increasing the ionic strength of the media as this enhanced interfibrillar interactions and thus strengthened the outer gel membrane. We further validated a potential application of SH as reusable matrixes for glucose oxidase (GOx) entrapment, where the SH work as microreactors from which substrate and product are freely able to migrate through the SH shell while avoiding enzyme leakage.

15.
Soft Matter ; 16(13): 3303-3310, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173723

RESUMO

The effect of the filler size on the structural and mechanical properties of an attractive fibrillated network composed of oxidised cellulose nanofibrils (OCNF) in water was investigated. Silica nanoparticles with a diameter of ca. 5 nm (SiNp5) and and ca. 158 nm (SiNp158) were chosen as non-interacting fillers of the OCNF network. These filler sizes were chosen, respectively, to have a particle size which was either similar to that of the network mesh size or much larger than it. Contrast matched small angle neutron scattering (SANS) experiments revealed that the presence of the fillers (SiNp5 and SiNp158) did not perturb the structural properties of the OCNF network at the nanometer scale. However, the filler size difference strongly affected the mechanical properties of the hydrogel upon large amplitude oscillatory shear. The presence of the smaller filler, SiNp5, preserved the mechanical properties of the hydrogels, while the larger filler, SiNp158, allowed a smoother breakage of the network and low network recoverability after breakage. This study showed that the filler-to-mesh size ratio, for non-interacting fillers, is pivotal for tailoring the non-linear mechanical properties of the gel, such as yielding and flow.

16.
Carbohydr Polym ; 233: 115816, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059878

RESUMO

Rheological properties of hydrogels composed of TEMPO-oxidised cellulose nanofibrils (OCNF)-starch in the presence of cationic surfactants were investigated. The cationic surfactants dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) were used to trigger gelation of OCNF at around 5 mM surfactant. As OCNF and DTAB/CTAB are oppositely charged, an electrostatic attraction is suggested to explain the gelation mechanism. OCNF (1 wt%) and soluble starch (0.5 and 1 wt%) were blended to prepare hydrogels, where the addition of starch to the OCNF resulted in a higher storage modulus. Starch polymers were suggested to form networks with cellulose nanofibrils. The stiffness and viscosity of OCNF-Starch hydrogels were enhanced further by the addition of cationic surfactants (5 mM of DTAB/CTAB). ζ -potential and amylose-iodine complex analyses were also conducted to confirm surface charge and interaction of OCNF-starch-surfactant in order to provide an in-depth understanding of the surfactant-induced gel networks.

17.
Biomacromolecules ; 21(5): 1812-1823, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31984728

RESUMO

Surface hydrophobization of cellulose nanomaterials has been used in the development of nanofiller-reinforced polymer composites and formulations based on Pickering emulsions. Despite the well-known effect of hydrophobic domains on self-assembly or association of water-soluble polymer amphiphiles, very few studies have addressed the behavior of hydrophobized cellulose nanomaterials in aqueous media. In this study, we investigate the properties of hydrophobized cellulose nanocrystals (CNCs) and their self-assembly and amphiphilic properties in suspensions and gels. CNCs of different hydrophobicity were synthesized from sulfated CNCs by coupling primary alkylamines of different alkyl chain lengths (6, 8, and 12 carbon atoms). The synthetic route permitted the retention of surface charge, ensuring good colloidal stability of hydrophobized CNCs in aqueous suspensions. We compare surface properties (surface charge, ζ potential), hydrophobicity (water contact angle, microenvironment probing using pyrene fluorescence emission), and surface activity (tensiometry) of different hydrophobized CNCs and hydrophilic CNCs. Association of hydrophobized CNCs driven by hydrophobic effects is confirmed by X-ray scattering (SAXS) and autofluorescent spectroscopy experiments. As a result of CNC association, CNC suspensions/gels can be produced with a wide range of rheological properties depending on the hydrophobic/hydrophilic balance. In particular, sol-gel transitions for hydrophobized CNCs occur at lower concentrations than hydrophilic CNCs, and more robust gels are formed by hydrophobized CNCs. Our work illustrates that amphiphilic CNCs can complement associative polymers as modifiers of rheological properties of water-based systems.


Assuntos
Celulose , Nanopartículas , Géis , Espalhamento a Baixo Ângulo , Suspensões , Água , Difração de Raios X
18.
RSC Adv ; 10(61): 37023-37027, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521254

RESUMO

Deep eutectic solvent (menthol : dodecanoic acid) in water (30 : 70) emulsions stabilised with partially oxidised cellulose nanoparticles remained stable for 200 days at room temperature. Deep eutectic-based emulsions offer potential for non-aqueous reaction systems, chemical extraction, and controlled release. Pickering emulsions using polysaccharides are less toxic and more stable than surfactant-stabilised emulsions.

19.
Soft Matter ; 16(2): 357-365, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31720672

RESUMO

Interfacial gels, obtained by the interaction of water-dispersible oxidised cellulose nanofibrils (OCNF) and oil-soluble oleylamine (OA), were produced across water/oil (W/O) interfaces. Surface rheology experiments showed that the complexation relies on the charge coupling between the negatively-charged OCNF and OA. Complexation across the W/O interface was found to be dependent on the ζ-potential of the OCNF (modulated by electrolyte addition), leading to different interfacial properties. Spontaneous OCNF adsorption at the W/O interface occurred for particles with ζ-potential more negative than -30 mV, resulting in the formation of interfacial gels; whilst for particles with ζ-potential of ca. -30 mV, spontaneous adsorption occurred, coupled with augmented interfibrillar interactions, yielding stronger and tougher interfacial gels. On the contrary, charge neutralisation of OCNF (ζ-potential values more positive than -30 mV) did not allow spontaneous adsorption of OCNF at the W/O interface. In the case of favourable OCNF adsorption, the interfacial gel was found to embed oil-rich droplets - a spontaneous emulsification process.

20.
J Mater Chem B ; 7(1): 53-64, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254950

RESUMO

3D foam scaffolds were produced in a "bottom-up" approach from lyophilised cationic cellulose nanofibril (CCNF) dispersions and emulsions (CCNF degree of substitution 23.0 ± 0.9%), using a directional freezing/lyophilisation approach, producing internal architectures ranging from aligned smooth walled micro channels, mimicking vascularised tissue, to pumice-like wall textures, reminiscent of porous bone. The open, highly porous architecture of these biomimetic scaffolds included mesopores within the walls of the channels. A combination of SEM and NMR cryoporometry and relaxometry was used to determine the porosity at different length scales: CCNF foams with aligned channels had an average macropore (channel) size of 35 ± 9 µm and a mesopore (wall) diameter of 26 ± 2 nm, while CCNF foams produced from directional freezing and lyophilisation of Pickering emulsions had mesoporous walls (5 ± 3 µm) in addition to channels (54 ± 20 µm). Glyoxal crosslinking both enhanced robustness and stiffness, giving Young's moduli of 0.45 to 50.75 MPa for CCNF foams with degrees of crosslinking from 0 to 3.04 mol%. Porosity and channels are critical scaffold design elements for transport of nutrients and waste products, as well as O2/CO2 exchange. The viability of MG-63 cells was enhanced on crosslinked, mechanically stiff scaffolds, indicating that these exquisitely structured, yet robust, foams could provide biomaterial scaffolds suitable for industrial applications requiring 3D cell culturing.


Assuntos
Materiais Biocompatíveis , Bioengenharia/métodos , Materiais Biomiméticos , Celulose/química , Nanofibras/química , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA