Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Vet Sci ; 10: 1272940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869487

RESUMO

Currently, control against bovine respiratory disease (BRD) primarily consists of mass administration of an antimicrobial upon arrival to facility, termed "metaphylaxis." The objective of this study was to determine the influence of six different antimicrobials used as metaphylaxis on the whole blood host transcriptome in healthy steers upon and following arrival to the feedlot. One hundred and five steers were stratified by arrival body weight (BW = 247 ± 28 kg) and randomly and equally allocated to one of seven treatments: negative control (NC), ceftiofur (CEFT), enrofloxacin (ENRO), florfenicol (FLOR), oxytetracycline (OXYT), tildipirosin (TILD), or tulathromycin (TULA). On day 0, whole blood samples and BW were collected prior to a one-time administration of the assigned antimicrobial. Blood samples were collected again on days 3, 7, 14, 21, and 56. A subset of cattle (n = 6) per treatment group were selected randomly for RNA sequencing across all time points. Isolated RNA was sequenced (NovaSeq 6,000; ~35 M paired-end reads/sample), where sequenced reads were processed with ARS-UCD1.3 reference-guided assembly (HISAT2/StringTie2). Differential expression analysis comparing treatment groups to NC was performed with glmmSeq (FDR ≤ 0.05) and edgeR (FDR ≤ 0.1). Functional enrichment was performed with KOBAS-i (FDR ≤ 0.05). When compared only to NC, unique differentially expressed genes (DEGs) found within both edgeR and glmmSeq were identified for CEFT (n = 526), ENRO (n = 340), FLOR (n = 56), OXYT (n = 111), TILD (n = 3,001), and TULA (n = 87). At day 3, CEFT, TILD, and OXYT shared multiple functional enrichment pathways related to T-cell receptor signaling and FcεRI-mediated NF-kappa beta (kB) activation. On day 7, Class I major histocompatibility complex (MHC)-mediated antigen presentation pathways were enriched in ENRO and CEFT groups, and CEFT and FLOR had DEGs that affected IL-17 signaling pathways. There were no shared pathways or Gene Ontology (GO) terms among treatments at day 14, but TULA had 19 pathways and eight GO terms enriched related to NF- κß activation, and interleukin/interferon signaling. Pathways related to cytokine signaling were enriched by TILD on day 21. Our research demonstrates immunomodulation and potential secondary therapeutic mechanisms induced by antimicrobials commonly used for metaphylaxis, providing insight into the beneficial anti-inflammatory properties antimicrobials possess.

2.
Vet Sci ; 10(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977250

RESUMO

Bovine respiratory disease (BRD) remains the leading disease within the U.S. beef cattle industry. Marketing decisions made prior to backgrounding may shift BRD incidence into a different phase of production, and the importance of host gene expression on BRD incidence as it relates to marketing strategy is poorly understood. Our objective was to compare the influence of marketing on host transcriptomes measured on arrival at a backgrounding facility on the subsequent probability of being treated for BRD during a 45-day backgrounding phase. This study, through RNA-Seq analysis of blood samples collected on arrival, evaluated gene expression differences between cattle which experienced a commercial auction setting (AUCTION) versus cattle directly shipped to backgrounding from the cow-calf phase (DIRECT); further analyses were conducted to determine differentially expressed genes (DEGs) between cattle which remained clinically healthy during backgrounding (HEALTHY) versus those that required treatment for clinical BRD within 45 days of arrival (BRD). A profound difference in DEGs (n = 2961) was identified between AUCTION cattle compared to DIRECT cattle, regardless of BRD development; these DEGs encoded for proteins involved in antiviral defense (increased in AUCTION), cell growth regulation (decreased in AUCTION), and inflammatory mediation (decreased in AUCTION). Nine and four DEGs were identified between BRD and HEALTHY cohorts in the AUCTION and DIRECT groups, respectively; DEGs between disease cohorts in the AUCTION group encoded for proteins involved in collagen synthesis and platelet aggregation (increased in HEALTHY). Our work demonstrates the clear influence marketing has on host expression and identified genes and mechanisms which may predict BRD risk.

3.
PLoS One ; 17(11): e0277033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327246

RESUMO

Bovine respiratory disease (BRD), the leading disease complex in beef cattle production systems, remains highly elusive regarding diagnostics and disease prediction. Previous research has employed cellular and molecular techniques to describe hematological and gene expression variation that coincides with BRD development. Here, we utilized weighted gene co-expression network analysis (WGCNA) to leverage total gene expression patterns from cattle at arrival and generate hematological and clinical trait associations to describe mechanisms that may predict BRD development. Gene expression counts of previously published RNA-Seq data from 23 cattle (2017; n = 11 Healthy, n = 12 BRD) were used to construct gene co-expression modules and correlation patterns with complete blood count (CBC) and clinical datasets. Modules were further evaluated for cross-populational preservation of expression with RNA-Seq data from 24 cattle in an independent population (2019; n = 12 Healthy, n = 12 BRD). Genes within well-preserved modules were subject to functional enrichment analysis for significant Gene Ontology terms and pathways. Genes which possessed high module membership and association with BRD development, regardless of module preservation ("hub genes"), were utilized for protein-protein physical interaction network and clustering analyses. Five well-preserved modules of co-expressed genes were identified. One module ("steelblue"), involved in alpha-beta T-cell complexes and Th2-type immunity, possessed significant correlation with increased erythrocytes, platelets, and BRD development. One module ("purple"), involved in mitochondrial metabolism and rRNA maturation, possessed significant correlation with increased eosinophils, fecal egg count per gram, and weight gain over time. Fifty-two interacting hub genes, stratified into 11 clusters, may possess transient function involved in BRD development not previously described in literature. This study identifies co-expressed genes and coordinated mechanisms associated with BRD, which necessitates further investigation in BRD-prediction research.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Transtornos Respiratórios , Doenças Respiratórias , Bovinos , Animais , Doenças Respiratórias/genética , Sistema Respiratório , Redes Reguladoras de Genes , Aumento de Peso/genética , Complexo Respiratório Bovino/genética
4.
Front Vet Sci ; 9: 1010039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225796

RESUMO

The impact of preweaning vaccination for bovine respiratory viruses on cattle health and subsequent bovine respiratory disease morbidity has been widely studied yet questions remain regarding the impact of these vaccines on host response and gene expression. Six randomly selected calves were vaccinated twice preweaning (T1 and T3) with a modified live vaccine for respiratory pathogens and 6 randomly selected calves were left unvaccinated. Whole blood samples were taken at first vaccination (T1), seven days later (T2), at revaccination and castration (T3), and at weaning (T4), and utilized for RNA isolation and sequencing. Serum from T3 and T4 was analyzed for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48 samples was bioinformatically processed with a HISAT2/StringTie pipeline, utilizing reference guided assembly with the ARS-UCD1.2 bovine genome. Differentially expressed genes were identified through analyzing the impact of time across all calves, influence of vaccination across treatment groups at each timepoint, and the interaction of time and vaccination. Calves, regardless of vaccine administration, demonstrated an increase in gene expression over time related to specialized proresolving mediator production, lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination was associated with gene expression related to natural killer cell activity and helper T-cell differentiation, enriching for an upregulation in Th17-related gene expression, and downregulated genes involved in complement system activity and coagulation mechanisms. Type-1 interferon production was unaffected by the influence of vaccination nor time. To our knowledge, this is the first study to evaluate mechanisms of vaccination and development in healthy calves through RNA sequencing analysis.

5.
Front Vet Sci ; 9: 883389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647109

RESUMO

The threat of bovine respiratory disease (BRD) for cattle operations is exacerbated by increasing prevalence of antimicrobial resistance (AMR) in Mannheimia haemolytica, a leading cause of BRD. Characterization of AMR in M. haemolytica by culture and susceptibility testing is complicated by uncertainty regarding the number of colonies that must be selected to accurately characterize AMR phenotypes (antibiograms) and genotypes in a culture. The study objective was to assess phenotypic and genotypic diversity of M. haemolytica isolates on nasopharyngeal swabs (NPS) from 28 cattle at risk for BRD or with BRD. NPS were swabbed onto five consecutive blood agar plates; after incubation up to 20 M. haemolytica colonies were selected per plate (up to 100 colonies per NPS). Phenotype was determined by measuring minimum inhibitory concentrations (MIC) for 11 antimicrobials and classifying isolates as resistant or not. Genotype was indirectly determined by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). NPS from 11 of 28 cattle yielded at least one M. haemolytica isolate; median (range) of isolates per NPS was 48 (1-94). NPS from seven cattle yielded one phenotype, 3 NPS yielded two, and 1 NPS yielded three; however, within a sample all phenotypic differences were due to only one MIC dilution. On each NPS all M. haemolytica isolated were the same genotype; genotype 1 was isolated from three NPS and genotype two was isolated from eight. Diversity of M. haemolytica on bovine NPS was limited, suggesting that selection of few colonies might adequately identify relevant phenotypes and genotypes.

6.
BMC Vet Res ; 18(1): 77, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197051

RESUMO

BACKGROUND: Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respiratory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling. Analysis of mRNA was performed with nSolver Advanced Analysis software (p < 0.05), comparing cattle groups based on the diagnosis of clinical BRD within 28 days of facility arrival (n = 115 Healthy; n = 119 BRD); BRD was further stratified for severity based on frequency of treatment and/or mortality (Treated_1, n = 89; Treated_2+, n = 30). Gene expression homogeneity of variance, receiver operator characteristic (ROC) curve, and decision tree analyses were performed between severity cohorts. RESULTS: Increased expression of mRNAs involved in specialized pro-resolving mediator synthesis (ALOX15, HPGD), leukocyte differentiation (LOC100297044, GCSAML, KLF17), and antimicrobial peptide production (CATHL3, GZMB, LTF) were identified in Healthy cattle. BRD cattle possessed increased expression of CFB, and mRNA related to granulocytic processes (DSG1, LRG1, MCF2L) and type-I interferon activity (HERC6, IFI6, ISG15, MX1). Healthy and Treated_1 cattle were similar in terms of gene expression, while Treated_2+ cattle were the most distinct. ROC cutoffs were used to generate an at-arrival treatment decision tree, which classified 90% of Treated_2+ individuals. CONCLUSIONS: Increased expression of complement factor B, pro-inflammatory, and type I interferon-associated mRNA hallmark the at-arrival expression patterns of cattle that develop severe clinical BRD. Here, we corroborate at-arrival mRNA markers identified in previous transcriptome studies and generate a prediction model to be evaluated in future studies. Further research is necessary to evaluate these expression patterns in a prospective manner.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Animais , Complexo Respiratório Bovino/diagnóstico , Complexo Respiratório Bovino/genética , Estudos de Casos e Controles , Bovinos , Doenças dos Bovinos/diagnóstico , Estudos Prospectivos , RNA Mensageiro/genética , Transcriptoma
7.
Sci Rep ; 11(1): 23877, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903778

RESUMO

Bovine respiratory disease (BRD) remains the leading infectious disease in post-weaned beef cattle. The objective of this investigation was to contrast the at-arrival blood transcriptomes from cattle derived from two distinct populations that developed BRD in the 28 days following arrival versus cattle that did not. Forty-eight blood samples from two populations were selected for mRNA sequencing based on even distribution of development (n = 24) or lack of (n = 24) clinical BRD within 28 days following arrival; cattle which developed BRD were further stratified into BRD severity cohorts based on frequency of antimicrobial treatment: treated once (treated_1) or treated twice or more and/or died (treated_2+). Sequenced reads (~ 50 M/sample, 150 bp paired-end) were aligned to the ARS-UCD1.2 bovine genome assembly. One hundred and thirty-two unique differentially expressed genes (DEGs) were identified between groups stratified by disease severity (healthy, n = 24; treated_1, n = 13; treated_2+, n = 11) with edgeR (FDR ≤ 0.05). Differentially expressed genes in treated_1 relative to both healthy and treated_2+ were predicted to increase neutrophil activation, cellular cornification/keratinization, and antimicrobial peptide production. Differentially expressed genes in treated_2+ relative to both healthy and treated_1 were predicted to increase alternative complement activation, decrease leukocyte activity, and increase nitric oxide production. Receiver operating characteristic (ROC) curves generated from expression data for six DEGs identified in our current and previous studies (MARCO, CFB, MCF2L, ALOX15, LOC100335828 (aka CD200R1), and SLC18A2) demonstrated good-to-excellent (AUC: 0.800-0.899; ≥ 0.900) predictability for classifying disease occurrence and severity. This investigation identifies candidate biomarkers and functional mechanisms in at arrival blood that predicted development and severity of BRD.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Infecções Respiratórias/genética , Transcriptoma , Animais , Biomarcadores/metabolismo , Bovinos/fisiologia , Infecções Respiratórias/veterinária
8.
Sci Rep ; 11(1): 22916, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824337

RESUMO

Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understanding of host response related to BRD pathophysiology. Supervised machine learning (ML) approaches present one such method for analyzing new and previously published transcriptome data to identify novel disease-associated genes and mechanisms. Our objective was to apply ML models to lung and immunological tissue datasets acquired from previous clinical BRD experiments to identify genes that classify disease with high accuracy. Raw mRNA sequencing reads from 151 bovine datasets (n = 123 BRD, n = 28 control) were downloaded from NCBI-GEO. Quality filtered reads were assembled in a HISAT2/Stringtie2 pipeline. Raw gene counts for ML analysis were normalized, transformed, and analyzed with MLSeq, utilizing six ML models. Cross-validation parameters (fivefold, repeated 10 times) were applied to 70% of the compiled datasets for ML model training and parameter tuning; optimized ML models were tested with the remaining 30%. Downstream analysis of significant genes identified by the top ML models, based on classification accuracy for each etiological association, was performed within WebGestalt and Reactome (FDR ≤ 0.05). Nearest shrunken centroid and Poisson linear discriminant analysis with power transformation models identified 154 and 195 significant genes for IBR and BRSV, respectively; from these genes, the two ML models discriminated IBR and BRSV with 100% accuracy compared to sham controls. Significant genes classified by the top ML models in IBR (154) and BRSV (195), but not BVDV (74), were related to type I interferon production and IL-8 secretion, specifically in lymphoid tissue and not homogenized lung tissue. Genes identified in Mannheimia haemolytica infections (97) were involved in activating classical and alternative pathways of complement. Novel findings, including expression of genes related to reduced mitochondrial oxygenation and ATP synthesis in consolidated lung tissue, were discovered. Genes identified in each analysis represent distinct genomic events relevant to understanding and predicting clinical BRD. Our analysis demonstrates the utility of ML with published datasets for discovering functional information to support the prediction and understanding of clinical BRD.


Assuntos
Complexo Respiratório Bovino/genética , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA-Seq , Aprendizado de Máquina Supervisionado , Transcriptoma , Animais , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/microbiologia , Complexo Respiratório Bovino/virologia , Bovinos , Bases de Dados Genéticas , Interações Hospedeiro-Patógeno , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia
9.
PLoS One ; 16(4): e0250758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901263

RESUMO

BACKGROUND: Despite decades of extensive research, bovine respiratory disease (BRD) remains the most devastating disease in beef cattle production. Establishing a clinical diagnosis often relies upon visual detection of non-specific signs, leading to low diagnostic accuracy. Thus, post-weaned beef cattle are often metaphylactically administered antimicrobials at facility arrival, which poses concerns regarding antimicrobial stewardship and resistance. Additionally, there is a lack of high-quality research that addresses the gene-by-environment interactions that underlie why some cattle that develop BRD die while others survive. Therefore, it is necessary to decipher the underlying host genomic factors associated with BRD mortality versus survival to help determine BRD risk and severity. Using transcriptomic analysis of at-arrival whole blood samples from cattle that died of BRD, as compared to those that developed signs of BRD but lived (n = 3 DEAD, n = 3 ALIVE), we identified differentially expressed genes (DEGs) and associated pathways in cattle that died of BRD. Additionally, we evaluated unmapped reads, which are often overlooked within transcriptomic experiments. RESULTS: 69 DEGs (FDR<0.10) were identified between ALIVE and DEAD cohorts. Several DEGs possess immunological and proinflammatory function and associations with TLR4 and IL6. Biological processes, pathways, and disease phenotype associations related to type-I interferon production and antiviral defense were enriched in DEAD cattle at arrival. Unmapped reads aligned primarily to various ungulate assemblies, but failed to align to viral assemblies. CONCLUSION: This study further revealed increased proinflammatory immunological mechanisms in cattle that develop BRD. DEGs upregulated in DEAD cattle were predominantly involved in innate immune pathways typically associated with antiviral defense, although no viral genes were identified within unmapped reads. Our findings provide genomic targets for further analysis in cattle at highest risk of BRD, suggesting that mechanisms related to type I interferons and antiviral defense may be indicative of viral respiratory disease at arrival and contribute to eventual BRD mortality.


Assuntos
Antivirais/metabolismo , Complexo Respiratório Bovino/patologia , Interferon Tipo I/metabolismo , Transcriptoma , Animais , Antivirais/uso terapêutico , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/metabolismo , Complexo Respiratório Bovino/mortalidade , Bovinos , Mapeamento de Sequências Contíguas , Perfilação da Expressão Gênica , Masculino , Fenótipo , Mapas de Interação de Proteínas/genética , Receptor 4 Toll-Like/metabolismo
10.
PLoS One ; 15(1): e0227507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929561

RESUMO

Bovine respiratory disease (BRD) is a multifactorial disease complex and the leading infectious disease in post-weaned beef cattle. Clinical manifestations of BRD are recognized in beef calves within a high-risk setting, commonly associated with weaning, shipping, and novel feeding and housing environments. However, the understanding of complex host immune interactions and genomic mechanisms involved in BRD susceptibility remain elusive. Utilizing high-throughput RNA-sequencing, we contrasted the at-arrival blood transcriptomes of 6 beef cattle that ultimately developed BRD against 5 beef cattle that remained healthy within the same herd, differentiating BRD diagnosis from production metadata and treatment records. We identified 135 differentially expressed genes (DEGs) using the differential gene expression tools edgeR and DESeq2. Thirty-six of the DEGs shared between these two analysis platforms were prioritized for investigation of their relevance to infectious disease resistance using WebGestalt, STRING, and Reactome. Biological processes related to inflammatory response, immunological defense, lipoxin metabolism, and macrophage function were identified. Production of specialized pro-resolvin mediators (SPMs) and endogenous metabolism of angiotensinogen were increased in animals that resisted BRD. Protein-protein interaction modeling of gene products with significantly higher expression in cattle that naturally acquire BRD identified molecular processes involving microbial killing. Accordingly, identification of DEGs in whole blood at arrival revealed a clear distinction between calves that went on to develop BRD and those that resisted BRD. These results provide novel insight into host immune factors that are present at the time of arrival that confer protection from BRD.


Assuntos
Doenças dos Bovinos/diagnóstico , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças Respiratórias/diagnóstico , Angiotensinogênio/metabolismo , Animais , Estudos de Casos e Controles , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , RNA/química , RNA/genética , RNA/metabolismo , Doenças Respiratórias/sangue , Doenças Respiratórias/genética , Análise de Sequência de RNA , Transdução de Sinais/genética
11.
Fish Shellfish Immunol ; 58: 253-258, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27645905

RESUMO

Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs) that have a critical role in bridging innate and adaptive immune responses in vertebrates. Dendritic cells have been characterized morphologically and functionally in the teleost fish models such as rainbow trout, salmonids, medaka, and zebrafish. The presence of DCs with remarkable similarities to human Langerhans cells (LCs) has been described in the spleen and anterior kidney of salmonids and rainbow trout. However, there is no evidence of the presence of DCs and their role in channel catfish immunity. In this study, we assessed DC-like cells in the immunocompetent tissues of channel catfish by immunohistochemistry (IHC), flow cytometry and transmission electron microscopy (TEM). We identified Langerin/CD207+ (L/CD207+) cells in the channel catfish anterior kidney, spleen and gill by IHC. Moreover, we described the cells that resembled mammal LC DCs containing Birbeck-like (BL) granules in channel catfish spleen, anterior and posterior kidneys and gill by TEM. Our data suggest that cells with DC-like morphology in the immune related organs of catfish may share morphological and functional properties with previously reported DCs in teleost fish and mammals. More detailed knowledge of the phenotype and the function of catfish DCs will not only help gain insight into the evolution of the vertebrate adaptive immune system but will also provide valuable information for development and optimization of immunotherapies and vaccination protocols for aquaculture use.


Assuntos
Ictaluridae/anatomia & histologia , Células de Langerhans/citologia , Animais , Citometria de Fluxo/veterinária , Brânquias/citologia , Brânquias/imunologia , Brânquias/ultraestrutura , Ictaluridae/imunologia , Imuno-Histoquímica/veterinária , Rim/citologia , Rim/imunologia , Rim/ultraestrutura , Células de Langerhans/ultraestrutura , Microscopia Eletrônica de Transmissão/veterinária , Baço/citologia , Baço/imunologia , Baço/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA