Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169997, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218493

RESUMO

Metal contamination is ubiquitous in urban areas and represents a risk to arthropod species. Bees are exposed to metals while foraging within contaminated landscapes from multiple sources. Eliminating the risk of bee exposure to metals is complex, and requires an understanding of how bees become contaminated, how metals accumulate within bee bodies, and how this exposure influences their health. We selected Bombus impatiens, the common eastern bumble bee, as our focal species because it is the most frequently encountered bumble bee species in the eastern United States and common within urban greenspaces. The aims of this study were to quantify the lethal concentration exposure limit (LC50) for B. impatiens foragers, assess the bioaccumulation ability of environmentally relevant concentrations of common urban metals in adults, larvae, and pupae, and compare the LC50 values against field relevant concentrations collected by foraging bumble bees within a legacy city. Bumble bees were orally exposed to arsenic oxide, cadmium chloride, or chromium oxide in sucrose solution to encourage consumption. The LC50 for arsenic (As2O3 36.4 mg/L), cadmium (CdCl2 10.3 mg/L), and chromium (CrO3 189.6 mg/L) are 202×, 79×, and 1459× greater than concentrations found within urban bumble bee collected provisions, respectively. Adult bumble bees fed field realistic concentrations of metals accumulate significant amounts of cadmium and lead within their bodies, but do not accumulate chromium and arsenic. Additionally, adults accumulate significantly higher concentrations of metals than brood. While bumble bee foragers are unlikely to encounter lethal metal concentrations while foraging in contaminated landscapes, it is crucial to consider and understand how sublethal concentrations impact overall colony functioning. The results from this study highlight the need to identify hazards and bioaccumulation ability of common metals as bees respond differently to each metal species, as well as the impacts of metal mixtures on bioaccumulation and toxicity.


Assuntos
Arsênio , Comportamento Alimentar , Abelhas , Animais , Cádmio , Bioacumulação , Cromo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA