Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 81: 127343, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035449

RESUMO

BACKGROUND: Coal and coal ash present inorganic elements associated with negative impacts on environment and human health. The objective of this study was to compare the toxicity of coal and coal ash from a power plant, assess their inorganic components, and investigate the biological impacts and potential mechanisms through in vitro and in vivo testing. METHODS: Particle-Induced X-ray Emission method was used to quantify inorganic elements and the toxicity was evaluated in Caenorhabditis elegans and Daphnia magna in acute and chronic procedures. The genotoxic potential was assessed using alkaline and FPG-modified Comet assay in HepG2 cells and mutagenicity was evaluated using Salmonella/microsome assay in TA97a, TA100, and TA102 strains. RESULTS: Inorganic elements such as aluminum (Al) and chromium (Cr) were detected at higher concentrations in coal ash compared to coal. These elements were found to be associated with increased toxicity of coal ash in both Caenorhabditis elegans and Daphnia magna. Coal and coal ash did not induce gene mutations, but showed genotoxic effects in HepG2 cells, which were increased using the FPG enzyme, indicating DNA oxidative damage. CONCLUSIONS: The combined findings from bioassays using C. elegans and D. magna support the higher toxicity of coal ash, which can be attributed to its elevated levels of inorganic elements. The genotoxicity observed in HepG2 cells confirms these results. This study highlights the need for continuous monitoring in areas affected by environmental degradation caused by coal power plants. Additionally, the analysis reveals significantly higher concentrations of various inorganic elements in coal ash compared to coal, providing insight into the specific elemental composition contributing to its increased toxicity.


Assuntos
Caenorhabditis elegans , Cinza de Carvão , Animais , Humanos , Cinza de Carvão/toxicidade , Cinza de Carvão/análise , Carvão Mineral/toxicidade , Carvão Mineral/análise , Dano ao DNA , Ensaio Cometa
2.
J Ethnopharmacol ; 314: 116614, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164253

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aloysia gratissima leaves are popularly used to treat respiratory, digestive, and nervous system disorders. Several studies have been carried out to determine the biological activity of A. gratissima, such as its antibacterial and anti-edematogenic activities, but despite the beneficial uses of A. gratissima, few studies have examined the toxicological profile of this plant. AIM OF THE STUDY: This study aimed to determine the chemical composition, cytotoxic, genotoxic, mutagenic potential, and antioxidant activity of an aqueous extract of A. gratissima leaves (AG-AEL). MATERIAL AND METHODS: The phytochemical constitution of AG-AEL was assessed by colorimetric analyses and High-performance liquid chromatography (HPLC). The inorganic elements were detected by Particle-Induced X-ray Emission (PIXE). The antioxidant, cytotoxicity, genotoxic, and mutagenic activities were evaluated in vitro by Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH), Sulforhodamine B (SRB) assay, comet assay, and Salmonella/microsome assays. RESULTS: AG-AEL indicated the presence of terpenoids, flavonoids, and phenolic acids. HPLC detected rutin at 2.41 ± 0.33 mg/100 mg. PIXE analysis indicated the presence of Mg, Si, P, S, K, Ca, Mn, and Zn. The 50% inhibitory concentration was 84.17 ± 3.17 µg/mL in the DPPH assay. Genotoxic effects were observed using the Comet assay in neuroblastoma (SH-SY5Y) cells and mutations were observed in TA102 and TA97a strains. The extract showed cytotoxic activities against ovarian (OVCAR-3), glioblastoma (U87MG), and colon (HT-29) cancer cell lines. CONCLUSIONS: In conclusion, AG-AEL increased DNA damage, induced frameshift, and oxidative mutations, and showed cytotoxic activities against different cancer cells. The in vitro toxicological effects observed suggest that this plant preparation should be used with caution, despite its pharmacological potential.


Assuntos
Neuroblastoma , Neoplasias Ovarianas , Humanos , Feminino , Apoptose , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Linhagem Celular Tumoral , Mutagênicos/farmacologia , Antioxidantes/toxicidade
3.
J Toxicol Environ Health A ; 84(8): 345-355, 2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33435828

RESUMO

Sida planicaulis is a weed thought to have originated in Brazil, where it is present in abundant quantities, but also this plant is also found in south-central Florida, Indian Ocean Islands, and the Pacific Islands. Sida planicaulis produces neurotoxicity that adversely affects livestock breeding with heavy animal losses and consequent negative impact on Brazil's economy. The aim of this study was to determine the chemical profile, cytotoxic and genotoxic effects of ethanolic extracts of S. planicaulis collected in winter (leaf extract) and summer (leaf extract and leaf + flower extract) using an in vitro model of human neuroblastoma cell line SH-SY5Y. Phytochemical screening demonstrated the presence of alkaloids, flavonoids, and apolar compounds. Rutin, quercetin, and swainsonine were detected by HPLC and GC/MS, respectively. Phosphorus, potassium, iron, and zinc were the inorganic elements found. Extracts produced cytotoxicity at all concentrations tested (7-4,000 µg/ml) as evidenced by the colorimetric assay [3-(4,5-dimethyl-thiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT)]. Based upon the alkaline comet assay extracts were found to induce genotoxicity at concentrations ranging from 0.437 to 7 µg/ml. DNA damage produced by extracts was affirmed using a modified comet assay with the enzymes Endo III and FPG in a concentration dependent manner. Further, enzyme-modified comet assay showed both oxidized purines and pyrimidines, and consequently oxidative stress was related to genomic instability and cell death. Data suggest that low concentrations of ethanolic extracts of S. planicaulis (different seasons) induced increased DNA damage related to oxidative stress and chemical composition.


Assuntos
Citotoxinas/farmacologia , Mutagênicos/farmacologia , Extratos Vegetais/farmacologia , Sida (Planta)/química , Linhagem Celular Tumoral , Citotoxinas/química , Humanos , Mutagênicos/química , Extratos Vegetais/química , Estações do Ano
4.
Ecotoxicol Environ Saf ; 179: 135-142, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31035247

RESUMO

Soybean farmers are exposed to various types of pesticides that contain in their formulations a combination of chemicals with genotoxic and mutagenic potential. Therefore, the objective of this paper was to evaluate the genetic damages caused by this pesticide exposure to soybean producers in the state of Mato Grosso (Brazil), regarding biochemical, genetic polymorphic and in silico analyses. A total of 148 individuals were evaluated, 76 of which were occupationally exposed and 72 were not exposed at all. The buccal micronucleus cytome assay (BMCyt) detected in the exposed group an increase on DNA damage and cell death. No inhibition of butyrylcholinesterase (BchE) was observed within the exposed group. The detection of inorganic elements was made through the particle-induced X-ray emission technique (PIXE), which revealed higher concentrations of Bromine (Br), Rubidium (Rb) and Lead (Pb) in rural workers. A molecular model using in silico analysis suggests how metal ions can cause both DNA damage and apoptosis in the exposed cells. Analysis of the compared effect of X-ray Repair Cross-complement Protein 1 (XRCC1) and Paraoxonase 1 (PON1) genotypes in the groups demonstrated an increase of binucleated cells (exposed group) and nuclear bud (non-exposed group) in individuals with the XRCC1 Trip/- and PON1 Arg/- genes. There was no significant difference in the telomere (TL) mean value in the exposed group in contrast to the non-exposed group. Our results showed that soybean producers showed genotoxic effect and cell death, which may have been induced by exposure to complex mixtures of agrochemicals and fertilizers. In addition, XRCC1 Arg/Arg could, in some respects, provide protection to individuals.


Assuntos
Misturas Complexas/toxicidade , Dano ao DNA , Fertilizantes/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Praguicidas/toxicidade , Polimorfismo Genético , Adulto , Apoptose/efeitos dos fármacos , Arildialquilfosfatase/efeitos dos fármacos , Brasil , Simulação por Computador , Células Epiteliais/efeitos dos fármacos , Fazendeiros , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Exposição Ocupacional/análise , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
5.
Chemosphere ; 217: 430-436, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30439655

RESUMO

Acid Black 10B (AB10B) is widely used for the production of textiles, leather and prints. It is a representative of azo dyes and it is well documented that some of these compounds are mutagenic per se, and that cleavage products (in particular aromatic amines) may cause damage of the genetic material and cancer. Since no toxicological data on AB10B have been published, we evaluated its mutagenic activity in Salmonella/microsome assays and studied its acute toxic and genotoxic properties in a human derived liver cell line (HepG2) which retained the activities of drug metabolizing enzymes. The compound did not cause cytotoxicity (MTT assay), but clear genotoxic effects were detected in pro- and eukaryotic indicator cells. Dose dependent induction of his+ revertants was seen in strain TA98 which detects frameshift mutations without metabolic activation; a more pronounced effect was seen in its derivative YG1024 which overexpresses N-acetyltransferase. Induction of single/double strand breaks by Comet assay was detected with concentrations > 0.125 mg/mL in liver derived cells; as well as increased rates for micronucleus (reflecting structural and numeric chromosomal aberrations) and nuclear buds which are a consequence of gene amplifications were seen with a higher dose (2.0 mg/mL) (p < 0.05; Tukey's test). The mutational pattern which was observed in the bacterial tests indicates that the cleavage product p-nitroaniline may cause the genotoxic effects of the dye. Our findings indicate that exposure of humans and the release of the compound into the environment may lead to adverse effects due to its DNA damaging activity.


Assuntos
Negro de Amido/toxicidade , Compostos Azo/toxicidade , Testes Imunológicos de Citotoxicidade/métodos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA