Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513744

RESUMO

Fouling of plate heat exchangers (PHEs) is a recurring problem when pasteurizing whey protein solutions. As Ca2+ is involved in denaturation/aggregation mechanisms of whey proteins, the use of calcium chelators seems to be a way to reduce the fouling of PHEs. Unfortunately, in depth studies investigating the changes of the whey protein fouling mechanism in the presence of calcium chelators are scarce. To improve our knowledge, reconstituted whey protein isolate (WPI) solutions were prepared with increasing amounts of phosphate, expressed in phosphorus (P). The fouling experiments were performed on a pilot-scale PHE, while monitoring the evolution of the pressure drop and heat transfer coefficient. The final deposit mass distribution and structure of the fouling layers were investigated, as well as the whey protein denaturation kinetics. Results suggest the existence of two different fouling mechanisms taking place, depending on the added P concentration in WPI solutions. For added P concentrations lower or equal to 20 mg/L, a spongy fouling layer consists of unfolded protein strands bound by available Ca2+. When the added P concentration is higher than 20 mg/L, a heterogeneously distributed fouling layer formed of calcium phosphate clusters covered by proteins in an arborescence structure is observed.

2.
Mater Sci Eng C Mater Biol Appl ; 79: 802-811, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629083

RESUMO

Insulin-loaded calcium phosphate nanoparticles have been proposed as a potential drug delivery system for the oral treatment of diabetes and to stimulate bone cell proliferation and bone mineralization. The kinetics of insulin incorporation onto hydroxyapatite (HA) and Sr (SrHA)- and Zn (ZnHA)-substituted hydroxyapatite nanoparticles was investigated using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, zeta potential measurements and circular dichroism (CD) spectroscopy. The increase in insulin concentration on HA, SrHA and ZnHA was a typical physical adsorption process controlled by electrostatic forces and followed a Freundlich isotherm model. Zn substitution enhanced the capacity of the apatite surface to adsorb insulin, whereas Sr substitution inhibited insulin uptake. The surface stoichiometry and mesopore specific area induced by Zn and Sr substitution are proposed as the main causes of the difference in insulin adsorption. Despite the weak interaction between insulin and the apatite surface, the CD spectra revealed a decrease in the insulin ellipticity when the protein was adsorbed on the HA, SrHA and ZnHA nanoparticles. A reduction in alpha-helical structures and an increase in beta sheets were observed when insulin interacted with the HA surface. A less pronounced effect was found for ZnHA, for which a subtle decrease in alpha-helical structures was followed by an increase in turn structures. Interaction with the SrHA surface did not change the native insulin conformation. In vitro cell culture experiments lasting 24h using F-OST stromal cells showed that the insulin loaded on HA and ZnHA did not affect cell proliferation but the insulin loaded on SrHA improved cell proliferation. These results suggest that the stability of the native protein conformation is an important factor to consider when cells interact with insulin adsorbed on metal-substituted HA surfaces.


Assuntos
Durapatita/química , Adsorção , Insulina , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio , Zinco
3.
Biointerphases ; 12(2): 02D411, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521505

RESUMO

Adsorption isotherms, circular dichroism (CD) spectroscopy, x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to investigate the adsorption of human osteocalcin (hOC) and decarboxylated (i.e., Gla converted back to Glu) hOC (dhOC) onto various calcium phosphate surfaces as well as silica surfaces. The adsorption isotherms and XPS nitrogen signals were used to track the amount of adsorbed hOC and dhOC. The intensities of key ToF-SIMS amino acid fragments were used to assess changes in the structure of adsorbed hOC and dhOC. CD spectra were used to investigate the secondary structure of OC. The largest differences were observed when the proteins were adsorbed onto silica versus calcium phosphate surfaces. Similar amounts (3-4 at. % N) of hOC and dhOC were adsorbed onto the silica surface. Higher amounts of hOC and dhOC were adsorbed on all the calcium phosphate surfaces. The ToF-SIMS data showed that the intensity of the Cys amino acid fragment, normalized to intensity of all amino acid fragments, was significantly higher (∼×10) when the proteins were adsorbed onto silica. Since in the native OC structure the cysteines are located in the center of three α-helices, this indicates both hOC and dhOC are more denatured on the silica surface. As hOC and dhOC denature upon adsorption to the silica surface, the cysteines become more exposed and are more readily detected by ToF-SIMS. No significant differences were detected between hOC and dhOC adsorbed onto the silica surface, but small differences were observed between hOC and dhOC adsorbed onto the calcium phosphate surfaces. In the OC structure, the α-3 helix is located above the α-1 and α-2 helices. Small differences in the ToF-SIMS intensities from amino acid fragments characteristic of each helical unit (Asn for α-1; His for α-2; and Phe for α-3) suggests either slight changes in the orientation or a slight uncovering of the α-1 and α-2 for adsorbed dhOC. XPS showed that similar amounts of hOC and dhOC were absorbed onto hydroxyapaptite and octacalcium phosphate surfaces, but ToF-SIMS detected some small differences in the amino acid fragment intensities on these surfaces for adsorbed hOC and dhOC.


Assuntos
Fosfatos de Cálcio/química , Osteocalcina/química , Dióxido de Silício/química , Humanos , Espectroscopia Fotoeletrônica , Estrutura Secundária de Proteína , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA