Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(6): 104450, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35677647

RESUMO

A detailed study of lead halide-layered perovskites with general formula A2PbX4 (where A is cyclohexylammonium (CHA) or cyclopentylammonium (CPA) cation and X is Cl- or Br- anion) is presented. Using variable temperature synchrotron X-ray powder diffraction, we observe that these compounds exhibit diverse crystal structures above room temperature. Very interestingly, we report some unconventional thermomechanical responses such as uniaxial negative thermal expansion and colossal positive thermal expansion in a perpendicular direction. For the polymorphs of (CHA)2PbBr4, the volumetric thermal expansion coefficient is among the highest reported for any extended inorganic crystalline solid, reaching 480 MK-1. The phase transitions are confirmed by calorimetry and dielectric measurements, where the dielectric versus temperature curves show anomalies related with the order-disorder phase transitions. In addition, these compounds exhibit a broad photoluminescence (PL) emission with a large Stokes shift, which is related with an exciton PL emission.

3.
Nat Commun ; 8: 15715, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569842

RESUMO

The fast growing family of organic-inorganic hybrid compounds has recently been attracting increased attention owing to the remarkable functional properties (magnetic, multiferroic, optoelectronic, photovoltaic) displayed by some of its members. Here we show that these compounds can also have great potential in the until now unexplored field of solid-state cooling by presenting giant barocaloric effects near room temperature already under easily accessible pressures in the hybrid perovskite [TPrA][Mn(dca)3] (TPrA: tetrapropylammonium, dca: dicyanamide). Moreover, we propose that this will not be an isolated example for such an extraordinary behaviour as many other organic-inorganic hybrids (metal-organic frameworks and coordination polymers) exhibit the basic ingredients to display large caloric effects which can be very sensitive to pressure and other external stimuli. These findings open up new horizons and great opportunities for both organic-inorganic hybrids and for solid-state cooling technologies.

4.
Inorg Chem ; 54(24): 11680-7, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26652059

RESUMO

A multistimuli response to temperature and pressure is found in the hybrid inorganic-organic perovskite-like [TPrA][Mn(dca)3] compound, which is related to a first-order structural phase transition near room temperature, Tt ≈ 330 K. This phase transition involves a transformation from room temperature polymorph I, with the noncentrosymmetric space group P4̅21c, to the high temperature polymorph II, with the centrosymmetric space group I4/mcm, and it implies ionic displacements, order-disorder phenomena, and a large and anisotropic thermal expansion (specially along the c-axis). As a consequence, [TPrA][Mn(dca)3] exhibits a dielectric anomaly, associated with the change from a cooperative to a noncooperative electric behavior (antiferroelectric (AFE)-paraelectric (PE) transition). The former implies an AFE distribution of electric dipoles in polymorph I, related to the described off-shift of the apolar TPrA cations and the order-disorder of the polar dca ligands mechanisms, that are different from those reported, up to now, for others perovskite-type hybrid compounds. Such cooperative electric order, below Tt ≈ 330 K, coexisting with long-range antiferromagnetic ordering below T = 2.1 K render the [TPrA][Mn(dca)3] a new type-I multiferroic material. In addition, the obtained experimental results reveal that this compound is also a multistimuli-responsive material, with a very large sensitivity toward temperature and applied external pressure, δTt/δP ≈ 24 K kbar(-1), even for small values of pressure (P < 2 kbar). Therefore, this material opens up a potential interest for future technological applications, such as temperature/pressure sensing.

5.
J Am Chem Soc ; 134(28): 11734-9, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22731707

RESUMO

Cs(3)Mn(2)O(4), a new member of the small family of ternary manganese (II/III) mixed-valent compounds, has been synthesized via the azide/nitrate route and studied using powder and single crystal X-ray diffraction, magnetic susceptibility measurements and density functional theory (DFT). Its crystal structure (P2(1)/c, Z = 8, a = 1276.33(1) pm, b = 1082.31(2) pm, c = 1280.29(2) pm, ß = 118.390(2)°) is based on one-dimensional MnO(2)(1.5-) chains built up from edge-sharing MnO(4) tetrahedra. The title compound is the first example of an intrinsically doped transition metalate of the series A(x)MnO(2), (A = alkali metal) where a complete 1:1 charge ordering of Mn(2+) and Mn(3+) is observed along the chains (-Mn(2+)-Mn(3+)-Mn(2+)-Mn(3+)-). From the magnetic point of view it basically consists of ferrimagnetic MnO(2) chains, where the Mn(2+) and Mn(3+) ions are strongly antiferromagnetically coupled up to high temperatures. Very interestingly, their long-range three-dimensional ordering below the Néel temperature (T(N)) ~12 K give rise to conspicuous field dependent magnetic ordering phenomena, for which we propose a consistent picture based on the change from antiferromagnetic to ferromagnetic coupling between the chains. Electronic structure calculations confirm the antiferromagnetic ordering as the ground state for Cs(3)Mn(2)O(4) and ferrimagnetic ordering as its nearly degenerate state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA