Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 13(7): 1325-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944668

RESUMO

BACKGROUND: Platelet secretion is critical to development of acute thrombotic occlusion. Platelet dense granules contain a variety of important hemostatically active substances. Nevertheless, biogenesis of platelet granules is poorly understood. OBJECTIVES: Serum- and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be highly expressed in platelets and megakaryocytes, but its role in the regulation of platelet granule biogenesis and its impact on thrombosis has not been investigated so far. METHODS AND RESULTS: Electron microscopy analysis of the platelet ultrastructure revealed a significant reduction in the number and packing of dense granules in platelets lacking SGK1 (sgk1(-/-) ). In sgk1(-/-) platelets serotonin content was significantly reduced and activation-dependent secretion of ATP, serotonin and CD63 significantly impaired. In vivo adhesion after carotis ligation was significantly decreased in platelets lacking SGK1 and occlusive thrombus formation after FeCl3 -induced vascular injury was significantly diminished in sgk1(-/-) mice. Transcript levels and protein abundance of dense granule biogenesis regulating GTPase Rab27b were significantly reduced in sgk1(-/-) platelets without affecting Rab27b mRNA stability. In MEG-01 cells transfection with constitutively active (S422) (D) SGK1 but not with inactive (K127) (N) SGK1 significantly enhanced Rab27b mRNA levels. Sgk1(-/-) megakaryocytes show significantly reduced expression of Rab27b and serotonin/CD63 levels compared with sgk1(+/+) megakaryocytes. Proteome analysis identified nine further vesicular transport proteins regulated by SGK1, which may have an impact on impaired platelet granule biogenesis in sgk1(-/-) platelets independent of Rab27b. CONCLUSIONS: The present observations identify SGK1 as a novel powerful regulator of platelet dense granule biogenesis, platelet secretion and thrombus formation. SGK1 is at least partially effective because it regulates transcription of Rab27b in megakaryocytes.


Assuntos
Plaquetas/enzimologia , Lesões das Artérias Carótidas/enzimologia , Grânulos Citoplasmáticos/enzimologia , Proteínas Imediatamente Precoces/sangue , Ativação Plaquetária , Proteínas Serina-Treonina Quinases/sangue , Vesículas Secretórias/enzimologia , Trombose/enzimologia , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Modelos Animais de Doenças , Feminino , Genótipo , Proteínas Imediatamente Precoces/deficiência , Proteínas Imediatamente Precoces/genética , Masculino , Megacariócitos/enzimologia , Megacariócitos/metabolismo , Camundongos Knockout , Fenótipo , Agregação Plaquetária , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Serotonina/sangue , Serotonina/metabolismo , Transdução de Sinais , Tetraspanina 30/sangue , Tetraspanina 30/metabolismo , Trombose/sangue , Trombose/genética , Trombose/patologia , Fatores de Tempo , Transfecção , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Biochem Soc Trans ; 33(Pt 4): 652-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16042566

RESUMO

Rab proteins are members of the superfamily of Ras-like small GTPases and are involved in several cellular processes relating to membrane trafficking and organelle mobility throughout the cell. Like other small GTPases, Rab proteins are initially synthesized as soluble proteins and for membrane attachment they require the addition of lipid moiety(ies) to specific residues of their polypeptide chain. Despite their well-documented roles in regulating cellular trafficking, Rab proteins own trafficking is still poorly understood. We still need to elucidate the molecular mechanisms of their recruitment to cellular membranes and the structural determinants for their specific cellular localization. Recent results indicate that Rab cellular targeting might be Rab-dependent, and this paper briefly reviews our current knowledge of this process.


Assuntos
Membrana Celular/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Ciclo Celular , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
3.
Br J Ophthalmol ; 88(3): 428-32, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14977782

RESUMO

BACKGROUND/AIMS: To report the generation of a new mouse model for a genetically determined corneal abnormality that occurred in transgenesis experiments. METHODS: Transgenic mice expressing mutant forms of Rab27a, a GTPase that has been implicated in the pathogenesis of choroideremia, were generated. RESULTS: Only one transgenic line (T27aT15) exhibited an unexpected eye phenotype. T27aT15 mice developed corneal opacities, usually unilateral, and cataracts, resulting in some cases in phthisical eyes. Histologically, the corneal stroma was thickened and vacuolated, and both epithelium and endothelium were thinned. The posterior segment of the eye was also affected with abnormal pigmentation, vessel narrowing, and abnormal leakage of dye upon angiography but was histologically normal. CONCLUSION: Eye abnormality in T27aT15 mice results from random insertional mutagenesis of the transgene as it was only observed in one line. The corneal lesion observed in T27aT15 mice most closely resembles posterior polymorphous corneal dystrophy and might result from the disruption of the equivalent mouse locus.


Assuntos
Distrofias Hereditárias da Córnea/genética , Modelos Animais , Mutagênese Insercional , Proteínas rab de Ligação ao GTP/genética , Animais , Distrofias Hereditárias da Córnea/patologia , Angiofluoresceinografia , Fundo de Olho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Proteínas rab27 de Ligação ao GTP
4.
J Mol Biol ; 313(4): 889-901, 2001 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11697911

RESUMO

Rab proteins are small GTP-binding proteins that form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. Here, we have identified the complete Rab families in the Caenorhabditis elegans (29 members), Drosophila melanogaster (29), Homo sapiens (60) and Arabidopsis thaliana (57), and we defined criteria for annotation of this protein family in each organism. We studied sequence conservation patterns and observed that the RabF motifs and the RabSF regions previously described in mammalian Rabs are conserved across species. This is consistent with conserved recognition mechanisms by general regulators and specific effectors. We used phylogenetic analysis and other approaches to reconstruct the multiplication of the Rab family and observed that this family shows a strict phylogeny of function as opposed to a phylogeny of species. Furthermore, we observed that Rabs co-segregating in phylogenetic trees show a pattern of similar cellular localisation and/or function. Therefore, animal and fungi Rab proteins can be grouped in "Rab functional groups" according to their segregating patterns in phylogenetic trees. These functional groups reflect similarity of sequence, localisation and/or function, and may also represent shared ancestry. Rab functional groups can help the understanding of the functional evolution of the Rab family in particular and vesicular transport in general, and may be used to predict general functions for novel Rab sequences.


Assuntos
Evolução Molecular , Filogenia , Proteínas rab de Ligação ao GTP/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional/métodos , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Éxons/genética , Humanos , Dados de Sequência Molecular , Família Multigênica/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência , Proteínas rab de Ligação ao GTP/genética
5.
Nat Rev Mol Cell Biol ; 2(10): 738-48, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11584301

RESUMO

Melanosomes are morphologically and functionally unique organelles within which melanin pigments are synthesized and stored. Melanosomes share some characteristics with lysosomes, but can be distinguished from them in many ways. The biogenesis and intracellular movement of melanosomes and related organelles are disrupted in several genetic disorders in mice and humans. The recent characterization of genes defective in these diseases has reinvigorated interest in the melanosome as a model system for understanding the molecular mechanisms that underlie intracellular membrane dynamics.


Assuntos
Melanócitos/fisiologia , Melanossomas/fisiologia , Animais , Citoesqueleto/fisiologia , Humanos , Melanossomas/genética , Fusão de Membrana , Camundongos , Modelos Biológicos , Movimento/fisiologia , Organelas/metabolismo
6.
J Biol Chem ; 276(51): 48213-22, 2001 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-11581260

RESUMO

Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Macrófagos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Prenilação de Proteína , Piridinas/farmacologia , Animais , Linhagem Celular , Macrófagos/metabolismo , Microscopia Eletrônica , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Coelhos
7.
FEBS Lett ; 498(2-3): 197-200, 2001 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-11412856

RESUMO

Small GTPases of the Rab family regulate membrane transport pathways. More than 50 mammalian Rab proteins are known, many with transport step-specific localisation. Rabs must associate with cellular membranes for activity and membrane attachment is mediated by prenyl (geranylgeranyl) post-translational modification. Mutations in genes encoding proteins essential for the geranylgeranylation reaction, Rab escort protein and Rab geranylgeranyl transferase, underlie genetic diseases. Choroideremia patients have loss of function mutations in REP1 and the murine Hermansky-Pudlak syndrome model gunmetal possesses a splice-site mutation in the alpha-subunit of RGGT. Here we discuss recent insights into Rab prenylation and advances towards our understanding of both diseases.


Assuntos
Alquil e Aril Transferases/metabolismo , Coroideremia/metabolismo , Síndrome de Hermanski-Pudlak/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Coroideremia/genética , Síndrome de Hermanski-Pudlak/genética , Humanos , Camundongos , Mutação , Prenilação de Proteína , Proteínas rab de Ligação ao GTP/genética
8.
Ophthalmology ; 108(4): 711-20, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11297488

RESUMO

PURPOSE: To clarify the pathogenesis of choroideremia. STUDY DESIGN: Human tissue study. TISSUES: Eyes of an 88-year-old symptomatic female carrier of choroideremia (CHM) and six normal, age-matched donors. METHODS: The eyes were processed for histopathologic examination, including immunocytochemistry with an antibody against the CHM gene product, REP-1, and retinal cell-specific markers. RESULTS: The CHM carrier retina showed patchy degeneration, but the photoreceptor and retinal pigment epithelium (RPE) loss appeared to be independent. The choriocapillaris was normal except where retinal areas were severely degenerate. The CHM gene product, REP-1, was localized to the cytoplasm of rods but not cones. CONCLUSIONS: It has generally been considered that photoreceptor degeneration in CHM is secondary to loss of the choriocapillaris or RPE. This study suggests that the rod photoreceptors are a primary site of disease in CHM.


Assuntos
Alquil e Aril Transferases , Coroideremia/patologia , Heterozigoto , Células Fotorreceptoras de Vertebrados/patologia , Epitélio Pigmentado Ocular/patologia , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais , Biomarcadores/análise , Coroideremia/genética , Coroideremia/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Opsinas de Bastonetes/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Cell Biol ; 152(4): 795-808, 2001 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11266470

RESUMO

Rab GTPases are regulators of intracellular membrane traffic. We report a possible function of Rab27a, a protein implicated in several diseases, including Griscelli syndrome, choroideremia, and the Hermansky-Pudlak syndrome mouse model, gunmetal. We studied endogenous Rab27a and overexpressed enhanced GFP-Rab27a fusion protein in several cultured melanocyte and melanoma-derived cell lines. In pigmented cells, we observed that Rab27a decorates melanosomes, whereas in nonpigmented cells Rab27a colocalizes with melanosome-resident proteins. When dominant interfering Rab27a mutants were expressed in pigmented cells, we observed a redistribution of pigment granules with perinuclear clustering. This phenotype is similar to that observed by others in melanocytes derived from the ashen and dilute mutant mice, which bear mutations in the Rab27a and MyoVa loci, respectively. We also found that myosinVa coimmunoprecipitates with Rab27a in extracts from melanocytes and that both Rab27a and myosinVa colocalize on the cytoplasmic face of peripheral melanosomes in wild-type melanocytes. However, the amount of myosinVa in melanosomes from Rab27a-deficient ashen melanocytes is greatly reduced. These results, together with recent data implicating myosinVa in the peripheral capture of melanosomes, suggest that Rab27a is necessary for the recruitment of myosinVa, so allowing the peripheral retention of melanosomes in melanocytes.


Assuntos
Compartimento Celular , Melanócitos/metabolismo , Melanossomas/metabolismo , Cadeias Pesadas de Miosina , Miosina Tipo V , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Coroideremia , Síndrome de Hermanski-Pudlak , Proteínas de Filamentos Intermediários/metabolismo , Melanócitos/ultraestrutura , Melanoma Experimental , Melanossomas/química , Camundongos , Mutação , Ligação Proteica , Células Tumorais Cultivadas , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/isolamento & purificação , Proteínas rab27 de Ligação ao GTP
10.
J Cell Biol ; 152(4): 825-34, 2001 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11266472

RESUMO

Rab27a activity is affected in several mouse models of human disease including Griscelli (ashen mice) and Hermansky-Pudlak (gunmetal mice) syndromes. A loss of function mutation occurs in the Rab27a gene in ashen (ash), whereas in gunmetal (gm) Rab27a dysfunction is secondary to a mutation in the alpha subunit of Rab geranylgeranyl transferase, an enzyme required for prenylation and activation of Rabs. We show here that Rab27a is normally expressed in cytotoxic T lymphocytes (CTLs), but absent in ashen homozygotes (ash/ash). Cytotoxicity and secretion assays show that ash/ash CTLs are unable to kill target cells or to secrete granzyme A and hexosaminidase. By immunofluorescence and electron microscopy, we show polarization but no membrane docking of ash/ash lytic granules at the immunological synapse. In gunmetal CTLs, we show underprenylation and redistribution of Rab27a to the cytosol, implying reduced activity. Gunmetal CTLs show a reduced ability to kill target cells but retain the ability to secrete hexosaminidase and granzyme A. However, only some of the granules polarize to the immunological synapse, and many remain dispersed around the periphery of the CTLs. These results demonstrate that Rab27a is required in a final secretory step and that other Rab proteins also affected in gunmetal are likely to be involved in polarization of the granules to the immunological synapse.


Assuntos
Proteínas do Citoesqueleto , Vesículas Secretórias/metabolismo , Serina Endopeptidases/metabolismo , Linfócitos T Citotóxicos/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Actinas/isolamento & purificação , Animais , Catepsina D , Membrana Celular/ultraestrutura , Polaridade Celular , Grânulos Citoplasmáticos/ultraestrutura , Complexo de Golgi/ultraestrutura , Granzimas , Síndrome de Hermanski-Pudlak , Hipopigmentação , Síndromes de Imunodeficiência , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Vesículas Secretórias/ultraestrutura , Linfócitos T Citotóxicos/ultraestrutura , Talina/isolamento & purificação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
11.
BMC Genet ; 2: 2, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11178108

RESUMO

BACKGROUND: Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. RESULTS: The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb). The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. CONCLUSIONS: Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.


Assuntos
Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Componentes do Gene , Humanos , Melanócitos/química , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , Alinhamento de Sequência , Distribuição Tecidual , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab27 de Ligação ao GTP
12.
J Biol Chem ; 276(8): 5841-5, 2001 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-11121396

RESUMO

After isoprenylation, Ras and other CAAX proteins undergo endoproteolytic processing by Rce1 and methylation of the isoprenylcysteine by Icmt (isoprenylcysteine carboxyl methyltransferase). We reported previously that Rce1-deficient mice died during late gestation or soon after birth. We hypothesized that Icmt deficiency might cause a milder phenotype, in part because of reports suggesting the existence of more than one activity for methylating isoprenylated proteins. To address this hypothesis and also to address the issue of other methyltransferase activities, we generated Icmt-deficient mice. Contrary to our expectation, Icmt deficiency caused a more severe phenotype than Rce1 deficiency, with virtually all of the knockout embryos (Icmt-/-) dying by mid-gestation. An analysis of chimeric mice produced from Icmt-/- embryonic stem cells showed that the Icmt-/- cells retained the capacity to contribute to some tissues (e.g. skeletal muscle) but not to others (e.g. brain). Lysates from Icmt-/- embryos lacked the ability to methylate either recombinant K-Ras or small molecule substrates (e.g. N-acetyl-S-geranylgeranyl-l-cysteine). In addition, Icmt-/- cells lacked the ability to methylate Rab proteins. Thus, Icmt appears to be the only enzyme participating in the carboxyl methylation of isoprenylated proteins.


Assuntos
Proteínas Metiltransferases/genética , Prenilação de Proteína/genética , Animais , Encéfalo/embriologia , Perda do Embrião , Endopeptidases/genética , Genes Letais , Heterozigoto , Homozigoto , Metilação , Camundongos , Camundongos Knockout , Músculo Esquelético/embriologia , Proteínas Metiltransferases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
13.
J Mol Biol ; 301(4): 1077-87, 2000 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-10966806

RESUMO

The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.


Assuntos
Sequência Conservada , Família Multigênica , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Structure ; 8(3): 241-51, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10745007

RESUMO

BACKGROUND: Rab geranylgeranyltransferase (RabGGT) catalyzes the addition of two geranylgeranyl groups to the C-terminal cysteine residues of Rab proteins, which is crucial for membrane association and function of these proteins in intracellular vesicular trafficking. Unlike protein farnesyltransferase (FT) and type I geranylgeranyltransferase, which both prenylate monomeric small G proteins or short peptides, RabGGT can prenylate Rab only when Rab is in a complex with Rab escort protein (REP). RESULTS: The crystal structure of rat RabGGT at 2.0 A resolution reveals an assembly of four distinct structural modules. The beta subunit forms an alpha-alpha barrel that contains most of the residues in the active site. The alpha subunit consists of a helical domain, an immunoglobulin (Ig)-like domain, and a leucine-rich repeat (LRR) domain. The N-terminal region of the alpha subunit binds to the active site in the beta subunit; residue His2alpha directly coordinates a zinc ion. The prenyl-binding pocket of RabGGT is deeper than that in FT. CONCLUSIONS: LRR and Ig domains are often involved in protein-protein interactions; in RabGGT they might participate in the recognition and binding of REP. The binding of the N-terminal peptide of the alpha subunit to the active site suggests an autoinhibition mechanism that might contribute to the inability of RabGGT to recognize short peptides or Rab alone as its substrate. Replacement of residues Trp102beta and Tyr154beta in FT by Ser48beta and Leu99beta, respectively, in RabGGT largely determine the different lipid-binding specificities of the two enzymes.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Conformação Proteica , Prenilação de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
15.
Proc Natl Acad Sci U S A ; 97(8): 4144-9, 2000 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-10737774

RESUMO

Few molecular events important to platelet biogenesis have been identified. Mice homozygous for the spontaneous, recessive mutation gunmetal (gm) have prolonged bleeding, thrombocytopenia, and reduced platelet alpha- and delta-granule contents. Here we show by positional cloning that gm results from a G-->A substitution mutation in a splice acceptor site within the alpha-subunit of Rab geranylgeranyl transferase (Rabggta), an enzyme that attaches geranylgeranyl groups to Rab proteins. Most Rabggta mRNAs from gm tissues skipped exon 1 and lacked a start codon. Rabggta protein and Rab geranylgeranyl transferase (GGTase) activity were reduced 4-fold in gm platelets. Geranylgeranylation and membrane association of Rab27, a Rab GGTase substrate, were significantly decreased in gm platelets. These findings indicate that geranylgeranylation of Rab GTPases is critical for hemostasis. Rab GGTase inhibition may represent a new treatment for thrombocytosis and clotting disorders.


Assuntos
Alquil e Aril Transferases/genética , Plaquetas/citologia , Divisão Celular/genética , Mutação , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Cromossomos Artificiais de Levedura , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Fenótipo , Prenilação de Proteína
16.
Gene ; 239(1): 109-16, 1999 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-10571040

RESUMO

Choroideremia (CHM) is an X-linked retinal degenerative disease that results from mutations in Rab Escort Protein-1 (REP1). REP1 acts in the prenylation of Rab GTPases, regulators of intracellular protein trafficking. Rab27a is unique among Rabs in that it is selectively unprenylated in CHM cells, suggesting that the degenerative process in CHM may result from unprenylation and consequent loss-of-function of Rab27a. As a first step towards the analysis of the Rab27a protein in patients, we report here the characterization of the human RAB27A gene. The putative protein encoded by this gene shares 96% identity with the previously cloned rat homologue. The RAB27A gene comprises five coding exons and two non-coding exons, of which one is alternatively used, and spans approximately 65 kb of DNA. There are three alternative poly-A addition sites in the long 3' UTR and also six potential single-nucleotide polymorphisms. The gene is located on chromosome 15q15-21.1, as determined by fluorescent in situ hybridization, and between markers D15S209 and AFM321ZD5 by radiation hybrid mapping.


Assuntos
Proteínas rab de Ligação ao GTP/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Sequência de Bases , Bandeamento Cromossômico , Mapeamento Cromossômico , Cromossomos Humanos Par 15/genética , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Éxons , Genes/genética , Humanos , Células Híbridas , Hibridização in Situ Fluorescente , Íntrons , Dados de Sequência Molecular , Poli A , Mapeamento por Restrição , Análise de Sequência de DNA , Células Tumorais Cultivadas , Proteínas rab27 de Ligação ao GTP
17.
Proc Natl Acad Sci U S A ; 95(21): 12266-70, 1998 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-9770475

RESUMO

Three distinct protein prenyl transferases, one protein farnesyl transferase (FTase) and two protein geranylgeranyl transferases (GGTase), catalyze prenylation of many cellular proteins. One group of protein substrates contains a C-terminal CAAX motif (C is Cys, A is aliphatic, and X is a variety of amino acids) in which the single cysteine residue is modified with either farnesyl or geranylgeranyl (GG) by FTase or GGTase type-I (GGTase-I), respectively. Rab proteins constitute a second group of substrates that contain a C-terminal double-cysteine motif (such as XXCC in Rab1a) in which both cysteines are geranylgeranylated by Rab GG transferase (RabGGTase). Previous characterization of CAAX prenyl transferases showed that the enzymes form stable complexes with their prenyl pyrophosphate substrates, acting as prenyl carriers. We developed a prenyl-binding assay and show that RabGGTase has a prenyl carrier function similar to the CAAX prenyl transferases. Stable RabGGTase:GG pyrophosphate (GGPP), FTase:GGPP, and GGTase-I:GGPP complexes show 1:1 (enzyme:GGPP) stoichiometry. Chromatographic analysis of prenylated products after single turnover reactions by using isolated RabGGTase:GGPP complex revealed that Rab is mono-geranylgeranylated. This study establishes that all three protein prenyl transferases contain a single prenyl-binding site and suggests that RabGGTase transfers two GG groups to Rabs in independent and consecutive reactions.


Assuntos
Alquil e Aril Transferases/metabolismo , Sítios de Ligação , Ligação Proteica , Prenilação de Proteína
18.
Ophthalmology ; 105(9): 1637-40, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9754170

RESUMO

OBJECTIVE: This study aimed to establish a practical diagnostic test for choroideremia (CHM) and to show its application in a family with the clinical diagnosis of choroideremia. DESIGN: Case series. PARTICIPANTS: Sixteen males from 13 families with clinically documented CHM and unaffected normal males were enrolled in this study. METHODS: Protein extracted from either leukocytes or Epstein-Barr virus-transformed lymphocytes was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of the protein was performed with two monoclonal antibodies, one against the CHM gene product, Rab escort protein-1 (REP-1), and the other against the alpha-subunit of farnesyl transferase. DNA was extracted from peripheral leukocytes and subjected to polymerase chain reaction-single stranded conformation polymorphism analysis using primers for the exons of the CHM gene. Where altered mobility of the DNA fragments was detected, direct sequencing of that exon was compared with the published normal sequence. RESULTS: The authors detected REP-1 in protein samples extracted from lymphoblastoid cell lines from female carriers but not from CHM males. The authors also showed the absence of REP-1 in the peripheral leukocytes of males affected with CHM. In one male who lacked REP-1, direct sequencing of exon 7 showed a cytosine-to-thymine transition mutation (Arg293X) in the CHM gene. CONCLUSIONS: The clinical diagnosis of CHM can be confirmed simply by immunoblot analysis with anti-REP-1 antibody, showing the absence of REP-1 protein in peripheral blood samples. Because all known mutations in the CHM gene create stop codons that truncate the protein product and result in absence of REP-1, the authors predict that most patients with CHM can be diagnosed by this procedure.


Assuntos
Proteínas de Transporte , Coroideremia/diagnóstico , Mutação Puntual , Proteínas rab de Ligação ao GTP , Proteínas Adaptadoras de Transdução de Sinal , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Coroideremia/genética , DNA/análise , Análise Mutacional de DNA , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Farnesiltranstransferase , Feminino , Heterozigoto , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Prenilação de Proteína
19.
Biochemistry ; 37(36): 12559-68, 1998 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-9730828

RESUMO

Rab proteins are geranylgeranylated on one or two C-terminal cysteines by Rab geranylgeranyl transferase (RabGGTase). The reaction is dependent on a Rab-binding protein, termed Rab escort protein (REP). Here, we studied the role of REP in the geranylgeranylation reaction. We first characterized the interaction between REP and ungeranylgeranylated Rab using analytical ultracentrifugation and a fluorescence-based assay. We measured an equilibrium dissociation constant of 0.2 microM for the formation of a 1:1 REP-Rab complex and showed that this interaction relies mostly on ionic bonds and does not involve the two C-terminal cysteine residues. Second, we show that REP is required for recognition of Rab by RabGGTase and therefore that the REP-Rab complex is the true substrate for RabGGTase. Third, we show that free REP inhibits the geranylgeranylation reaction, suggesting that the complex is recognized by RabGGTase primarily via a REP-binding site. Our data suggest a model whereby REP behaves kinetically as an essential activator of the reaction.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Ligação ao GTP/química , Prenilação de Proteína , Proteínas rab de Ligação ao GTP , Proteínas Adaptadoras de Transdução de Sinal , Alquil e Aril Transferases/antagonistas & inibidores , Animais , Proteínas de Transporte/química , Catálise , Cinética , Soluções , Espectrometria de Fluorescência , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA