Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38838312

RESUMO

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Assuntos
Variação Genética , Doenças Raras , Sequenciamento Completo do Genoma , Feminino , Humanos , Masculino , Estudos de Coortes , Exoma , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etnologia , Doenças Genéticas Inatas/genética , Testes Genéticos , Genoma Humano , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/etnologia , Doenças Raras/genética , Análise de Sequência de DNA , Criança , Adolescente , Adulto Jovem , Adulto
2.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832520

RESUMO

Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.


Assuntos
Modelos Animais de Doenças , Doenças Genéticas Inatas , Xenopus , Animais , Xenopus/genética , Humanos , Doenças Genéticas Inatas/genética , Fenótipo
3.
Genet Med ; 26(4): 101073, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38245859

RESUMO

PURPOSE: The 100,000 Genomes Project diagnosed a quarter of affected participants, but 26% of diagnoses were not on the applied gene panel(s); with many being de novo variants. Assessing biallelic variants without a gene panel is more challenging. METHODS: We sought to identify missed biallelic diagnoses using GenePy, which incorporates allele frequency, zygosity, and a user-defined deleterious metric, generating an aggregate GenePy score per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in 78,216 100,000 Genomes Project participants. For each gene, we ranked participant GenePy scores and scrutinized affected participants without a diagnosis, whose scores ranked among the top 5 for each gene. In cases which participant phenotypes overlapped with the disease gene of interest, we extracted rare variants and applied phase, ClinVar, and ACMG classification. RESULTS: 3184 affected individuals without a molecular diagnosis had a top-5-ranked GenePy score and 682 of 3184 (21%) had phenotypes overlapping with a top-ranking gene. In 122 of 669 (18%) phenotype-matched cases (excluding 13 withdrawn participants), we identified a putative missed diagnosis (2.2% of all undiagnosed participants). A further 334 of 669 (50%) cases have a possible missed diagnosis but require functional validation. CONCLUSION: Applying GenePy at scale has identified 456 potential diagnoses, demonstrating the value of novel diagnostic strategies.


Assuntos
Diagnóstico Ausente , Humanos , Virulência , Frequência do Gene/genética , Fenótipo , Genes Recessivos
4.
Healthcare (Basel) ; 11(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132069

RESUMO

Genome sequencing is available as a clinical test in the UK through the Genomic Medicine Service (GMS). The GMS analytical strategy predominantly filters genome data on preselected gene panels. Whilst this reduces variants requiring assessment by reporting laboratories, pathogenic variants outside applied panels may be missed, and variants in genes without established disease-gene relationships are largely ignored. This study compares the analysis of a research exome to a GMS clinical genome for the same patients. For the research exome, we applied a panel-agnostic approach filtering for variants with High Pathogenic Potential (HiPPo) using ClinVar, allele frequency, and in silico prediction tools. We then restricted HiPPo variants to Gene Curation Coalition (GenCC) disease genes. These results were compared with the GMS genome panel-based approach. Twenty-four participants from eight families underwent parallel research exome and GMS genome sequencing. Exome HiPPo analysis identified a similar number of variants as the GMS panel-based approach. GMS genome analysis returned two pathogenic variants and one de novo variant. Exome HiPPo analysis returned the same variants plus an additional pathogenic variant and three further de novo variants in novel genes, where case series are underway. When HiPPo was restricted to GenCC disease genes, statistically fewer variants required assessment to identify more pathogenic variants than reported by the GMS, giving a diagnostic rate per variant assessed of 20% for HiPPo versus 3% for the GMS. With UK plans to sequence 5 million genomes, strategies are needed to optimise genome analysis beyond gene panels whilst minimising the burden of variants requiring clinical assessment.

5.
Genes (Basel) ; 14(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37628633

RESUMO

With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).


Assuntos
Doenças Renais Policísticas , Insuficiência Renal Crônica , Humanos , Rim , Mapeamento Cromossômico , Genes Modificadores
6.
Am J Hum Genet ; 110(9): 1496-1508, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37633279

RESUMO

Predicted loss of function (pLoF) variants are often highly deleterious and play an important role in disease biology, but many pLoF variants may not result in loss of function (LoF). Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines' PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 genes associated with autosomal-recessive disease from the Genome Aggregation Database (gnomAD v.2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in a low proportion expressed across transcripts (pext) scored region, or the presence of cryptic in-frame splice rescues. Variants predicted to evade LoF or to be potential artifacts were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of pLoF variants predicted as likely not LoF/not LoF, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.


Assuntos
Padrões de Herança , Humanos , Éxons , Incerteza
7.
Nat Commun ; 14(1): 2880, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208336

RESUMO

Regulation of cutaneous immunity is severely compromised in inflammatory skin disease. To investigate the molecular crosstalk underpinning tolerance versus inflammation in atopic dermatitis, we utilise a human in vivo allergen challenge study, exposing atopic dermatitis patients to house dust mite. Here we analyse transcriptional programmes at the population and single cell levels in parallel with immunophenotyping of cutaneous immunocytes revealed a distinct dichotomy in atopic dermatitis patient responsiveness to house dust mite challenge. Our study shows that reactivity to house dust mite was associated with high basal levels of TNF-expressing cutaneous Th17 T cells, and documents the presence of hub structures where Langerhans cells and T cells co-localised. Mechanistically, we identify expression of metallothioneins and transcriptional programmes encoding antioxidant defences across all skin cell types, that appear to protect against allergen-induced inflammation. Furthermore, single nucleotide polymorphisms in the MTIX gene are associated with patients who did not react to house dust mite, opening up possibilities for therapeutic interventions modulating metallothionein expression in atopic dermatitis.


Assuntos
Dermatite Atópica , Animais , Humanos , Dermatite Atópica/genética , Alérgenos , Inflamação/genética , Pele , Pyroglyphidae
8.
medRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034701

RESUMO

The 100,000 Genomes Project (100KGP) diagnosed a quarter of recruited affected participants, but 26% of diagnoses were in genes not on the chosen gene panel(s); with many being de novo variants of high impact. However, assessing biallelic variants without a gene panel is challenging, due to the number of variants requiring scrutiny. We sought to identify potential missed biallelic diagnoses independent of the gene panel applied using GenePy - a whole gene pathogenicity metric. GenePy scores all variants called in a given individual, incorporating allele frequency, zygosity, and a user-defined deleterious metric (CADD v1.6 applied herein). GenePy then combines all variant scores for individual genes, generating an aggregate score per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in 78,216 individuals in 100KGP. For each gene, we ranked participant GenePy scores for that gene, and scrutinised affected individuals without a diagnosis whose scores ranked amongst the top-5 for each gene. We assessed these participants' phenotypes for overlap with the disease gene associated phenotype for which they were highly ranked. Where phenotypes overlapped, we extracted rare variants in the gene of interest and applied phase, ClinVar and ACMG classification looking for putative causal biallelic variants. 3184 affected individuals without a molecular diagnosis had a top-5 ranked GenePy gene score and 682/3184 (21%) had phenotypes overlapping with one of the top-ranking genes. After removing 13 withdrawn participants, in 122/669 (18%) of the phenotype-matched cases, we identified a putative missed diagnosis in a top-ranked gene supported by phasing, ClinVar and ACMG classification. A further 334/669 (50%) of cases have a possible missed diagnosis but require functional validation. Applying GenePy at scale has identified potential diagnoses for 456/3183 (14%) of undiagnosed participants who had a top-5 ranked GenePy score in a recessive disease gene, whilst adding only 1.2 additional variants (per individual) for assessment.

9.
J Pediatr Gastroenterol Nutr ; 77(1): 70-78, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079872

RESUMO

BACKGROUND/OBJECTIVE: Heterogeneity and chronicity of Crohn disease (CD) make prediction of outcomes difficult. To date, no longitudinal measure can quantify burden over a patient's disease course, preventing assessment and integration into predictive modeling. Here, we aimed to demonstrate the feasibility of constructing a data driven, longitudinal disease burden score. METHODS: Literature was reviewed for tools used in assessment of CD activity. Themes were identified to construct a pediatric CD morbidity index (PCD-MI). Scores were assigned to variables. Data were extracted automatically from the electronic patient records at Southampton Children's Hospital, diagnosed from 2012 to 2019 (inclusive). PCD-MI scores were calculated, adjusted for duration of follow up and assessed for variation (ANOVA) and distribution (Kolmogorov-Smirnov). RESULTS: Nineteen clinical/biological features across five themes were included in the PCD-MI including blood/fecal/radiological/endoscopic results, medication usage, surgery, growth parameters, and extraintestinal manifestations. Maximal score was 100 after accounting for follow-up duration. PCD-MI was assessed in 66 patients, mean age 12.5 years. Following quality filtering, 9528 blood/fecal test results and 1309 growth measures were included. Mean PCD-MI score was 14.95 (range 2.2-32.5); data were normally distributed ( P = 0.2) with 25% of patients having a PCD-MI < 10. There was no difference in the mean PCD-MI when split by year of diagnosis, F -statistic 1.625, P = 0.147. CONCLUSIONS: PCD-MI is a calculatable measure for a cohort of patients diagnosed over an 8-year period, integrating a wide-range of data with potential to determine high or low disease burden. Future iterations of the PCD-MI require refinement of included features, optimized scores, and validation on external cohorts.


Assuntos
Doença de Crohn , Humanos , Criança , Doença de Crohn/diagnóstico , Doença de Crohn/cirurgia , Progressão da Doença , Efeitos Psicossociais da Doença , Morbidade
10.
Lancet Rheumatol ; 5(4): e184-e199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36855438

RESUMO

Background: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2-11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75-1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58-1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91-1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70-1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11-0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50-0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38-0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45-0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health.

11.
medRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945502

RESUMO

Predicted loss of function (pLoF) variants are highly deleterious and play an important role in disease biology, but many of these variants may not actually result in loss-of-function. Here we present a framework that advances interpretation of pLoF variants in research and clinical settings by considering three categories of LoF evasion: (1) predicted rescue by secondary sequence properties, (2) uncertain biological relevance, and (3) potential technical artifacts. We also provide recommendations on adjustments to ACMG/AMP guidelines's PVS1 criterion. Applying this framework to all high-confidence pLoF variants in 22 autosomal recessive disease-genes from the Genome Aggregation Database (gnomAD, v2.1.1) revealed predicted LoF evasion or potential artifacts in 27.3% (304/1,113) of variants. The major reasons were location in the last exon, in a homopolymer repeat, in low per-base expression (pext) score regions, or the presence of cryptic splice rescues. Variants predicted to be potential artifacts or to evade LoF were enriched for ClinVar benign variants. PVS1 was downgraded in 99.4% (162/163) of LoF evading variants assessed, with 17.2% (28/163) downgraded as a result of our framework, adding to previous guidelines. Variant pathogenicity was affected (mostly from likely pathogenic to VUS) in 20 (71.4%) of these 28 variants. This framework guides assessment of pLoF variants beyond standard annotation pipelines, and substantially reduces false positive rates, which is key to ensure accurate LoF variant prediction in both a research and clinical setting.

12.
medRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778464

RESUMO

Genome sequencing is now available as a clinical test on the National Health Service (NHS) through the Genome Medicine Service (GMS). The GMS have set out an analytical strategy that predominantly filters genome data on a pre-selected gene panel(s). Whilst this approach reduces the number of variants requiring assessment by reporting laboratories, pathogenic variants outside of the gene panel applied may be missed, and candidate variants in novel genes are largely ignored. This study sought to compare a research exome analysis to an independent clinical genome analysis performed through the NHS for the same group of patients. When analysing the exome data, we applied a panel agnostic approach filtering for variants with High Pathogenic Potential (HiPPo) using ClinVar, allele frequency, and in silico prediction tools. We then compared this gene agnostic analysis to the panel-based approach as applied by the GMS to genome data. Later we restricted HiPPo variants to a panel of the Gene Curation Coalition (GenCC) morbid genes and compared the diagnostic yield with the variants filtered using the GMS strategy. 24 patients from 8 families underwent parallel research exome sequencing and GMS genome sequencing. HiPPo analysis applied to research exome data identified a similar number of variants as the gene panel-based approach applied by the GMS. GMS clinical genome analysis identified and returned 2 pathogenic variants and 3 variants of uncertain significance. HiPPo research exome analysis identified the same variants plus an additional pathogenic variant and a further 3 de novo variants of uncertain significance in novel genes, where case series and functional studies are underway. When HiPPo was restricted to GenCC disease genes (strong or definitive), the same pathogenic variants were identified yet statistically fewer variants required assessment to identify more diagnostic variants than reported by the GMS genome strategy. This gave a diagnostic rate per variant assessed of 20% for HiPPo restricted to GenCC versus 3% for the GMS panel-based approach. With plans to sequence 5 million more NHS patients, strategies are needed to optimise the full potential of genome data beyond gene panels whilst minimising the burden of variants that require clinical assessment.

13.
Hum Genet ; 142(3): 351-362, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36477409

RESUMO

BACKGROUND: Genome sequencing was first offered clinically in the UK through the 100,000 Genomes Project (100KGP). Analysis was restricted to predefined gene panels associated with the patient's phenotype. However, panels rely on clearly characterised phenotypes and risk missing diagnoses outside of the panel(s) applied. We propose a complementary method to rapidly identify pathogenic variants, including those missed by 100KGP methods. METHODS: The Loss-of-function Observed/Expected Upper-bound Fraction (LOEUF) score quantifies gene constraint, with low scores correlated with haploinsufficiency. We applied DeNovoLOEUF, a filtering strategy to sequencing data from 13,949 rare disease trios in the 100KGP, by filtering for rare, de novo, loss-of-function variants in disease genes with a LOEUF score < 0.2. We compared our findings with the corresponding patient's diagnostic reports. RESULTS: 324/332 (98%) of the variants identified using DeNovoLOEUF were diagnostic or partially diagnostic (whereby the variant was responsible for some of the phenotype). We identified 39 diagnoses that were "missed" by 100KGP standard analyses, which are now being returned to patients. CONCLUSION: We have demonstrated a highly specific and rapid method with a 98% positive predictive value that has good concordance with standard analysis, low false-positive rate, and can identify additional diagnoses. Globally, as more patients are being offered genome sequencing, we anticipate that DeNovoLOEUF will rapidly identify new diagnoses and facilitate iterative analyses when new disease genes are discovered.


Assuntos
Genoma , Fenótipo , Sequenciamento Completo do Genoma/métodos
14.
HGG Adv ; 4(1): 100157, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36408368

RESUMO

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtorno do Espectro Autista/genética , Drosophila melanogaster/genética , Transtornos do Neurodesenvolvimento/genética , Análise por Conglomerados , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Drosophila/genética
15.
J Crohns Colitis ; 17(3): 450-458, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36006803

RESUMO

Studies of Crohn's disease have consistently implicated NOD2 as the most important gene in disease pathogenesis since first being identified in 2001. Thereafter, genome-wide association, next-generation sequencing and functional analyses have all confirmed a key role for NOD2, but despite this, NOD2 also has significant unresolved complexity. More recent studies have reinvigorated an early hypothesis that NOD2 may be a single-gene cause of disease, and the distinct ileal stricturing phenotype seen with NOD2-related disease presents an opportunity for personalized diagnosis, disease prediction and targeted therapy. The genomics of NOD2 has much that remains unknown, including the role of rare variation, phasing of variants across the haplotype block and the role of variation in the NOD2-regulatory regions. Here, we discuss the evidence and the unmet needs of NOD2 research, based on recently published evidence, and suggest methods that may meet these requirements.


Assuntos
Doença de Crohn , Estudo de Associação Genômica Ampla , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Fenótipo , Proteína Adaptadora de Sinalização NOD2/genética , Predisposição Genética para Doença
16.
Clin Genet ; 103(2): 214-218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36148635

RESUMO

Renal Fanconi syndrome (RFS) is a generalised disorder of the proximal convoluted tubule. Many genes have been associated with RFS including those that cause systemic disorders such as cystinosis, as well as isolated RFS. We discuss the case of a 10-year-old female who presented with leg pain and raised creatinine on a screening blood test. Her mother has RFS and required a kidney transplant in her thirties. Further investigations confirmed RFS in the daughter. Exome sequencing was performed on the affected mother, child, and unaffected father. We identified a novel variant in GATM; c.965G>C p.(Arg322Pro) segregating dominantly in the mother and daughter. We validated our finding with molecular dynamics simulations and demonstrated a dynamic signature that differentiates our variant and two previously identified pathogenic variants in GATM from wildtype. Genetic testing has uncovered a novel pathogenic variant that predicts progression to end stage kidney failure and has important implications for family planning and cascade testing. We recommend that GATM is screened for in children presenting with RFS, in addition to adults, particularly with kidney failure, who may have had previous negative gene testing.


Assuntos
Síndrome de Fanconi , Falência Renal Crônica , Criança , Adulto , Feminino , Humanos , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/genética , Síndrome de Fanconi/complicações , Falência Renal Crônica/genética , Falência Renal Crônica/complicações , Testes Genéticos , Causalidade
17.
Inflamm Bowel Dis ; 29(4): 511-521, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161322

RESUMO

BACKGROUND: Crohn's disease (CD) is highly heterogenous and may be complicated by stricturing behavior. Personalized prediction of stricturing will inform management. We aimed to create a stricturing risk stratification model using genomic/clinical data. METHODS: Exome sequencing was performed on CD patients, and phenotype data retrieved. Biallelic variants in NOD2 were identified. NOD2 was converted into a per-patient deleteriousness metric ("GenePy"). Using training data, patients were stratified into risk groups for fibrotic stricturing using NOD2. Findings were validated in a testing data set. Models were modified to include disease location at diagnosis. Cox proportional hazards assessed performance. RESULTS: Six hundred forty-five patients were included (373 children and 272 adults); 48 patients fulfilled criteria for monogenic NOD2-related disease (7.4%), 24 of whom had strictures. NOD2 GenePy scores stratified patients in training data into 2 risk groups. Within testing data, 30 of 161 patients (18.6%) were classified as high-risk based on the NOD2 biomarker, with stricturing in 17 of 30 (56.7%). In the low-risk group, 28 of 131 (21.4%) had stricturing behavior. Cox proportional hazards using the NOD2 risk groups demonstrated a hazard ratio (HR) of 2.092 (P = 2.4 × 10-5), between risk groups. Limiting analysis to patients diagnosed aged < 18-years improved performance (HR-3.164, P = 1 × 10-6). Models were modified to include disease location, such as terminal ileal (TI) disease or not. Inclusion of NOD2 risk groups added significant additional utility to prediction models. High-risk group pediatric patients presenting with TI disease had a HR of 4.89 (P = 2.3 × 10-5) compared with the low-risk group patients without TI disease. CONCLUSIONS: A NOD2 genomic biomarker predicts stricturing risk, with prognostic power improved in pediatric-onset CD. Implementation into a clinical setting can help personalize management.


NOD2 is a well-established risk gene for development of Crohn's disease and stricturing behavior. Here we demonstrate NOD2 can be utilized as a genomic biomarker, stratifying patients into 2 stricturing risk groups. Further refinement using disease location at diagnosis improved risk stratification.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/genética , Doença de Crohn/complicações , Constrição Patológica , Fenótipo , Fatores de Risco , Prognóstico , Proteína Adaptadora de Sinalização NOD2/genética
18.
medRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38328047

RESUMO

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. Methods: GS was performed for 744 individuals with rare disease who were genetically undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial variants. Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These included small structural variants (13), copy neutral inversions and complex rearrangements (8), tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more easily found using GS related to uniformity of coverage (19). Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or there is a strong clinical suspicion for a condition and prior targeted genetic testing has been negative.

19.
Genet Med ; 24(12): 2593-2594, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36121441
20.
Hum Mutat ; 43(12): 1844-1851, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904126

RESUMO

TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.


Assuntos
Transtornos do Neurodesenvolvimento , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Criança , Humanos , Deficiências do Desenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA