Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 8(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135299

RESUMO

Volume changes of responsive microgels can probe interactions between polyelectrolytes and species of opposite charges such as peptides and proteins. We have investigated a microfluidics method to synthesize highly responsive, covalently crosslinked, hyaluronic acid microgels for such purposes. Sodium hyaluronate (HA), pre-modified with ethylacrylamide functionalities, was crosslinked in aqueous droplets created with a microfluidic technique. We varied the microgel properties by changing the degree of modification and concentration of HA in the reaction mixture. The degree of modification was determined by 1H NMR. Light microscopy was used to investigate the responsiveness of the microgels to osmotic stress in aqueous saline solutions by simultaneously monitoring individual microgel species in hydrodynamic traps. The permeability of the microgels to FITC-dextrans of molecular weights between 4 and 250 kDa was investigated using confocal laser scanning microscopy. The results show that the microgels were spherical with diameters between 100 and 500 µm and the responsivity tunable by changing the degree of modification and the HA concentration. Microgels were fully permeable to all investigated FITC-dextran probes. The partitioning to the microgel from an aqueous solution decreased with the increasing molecular weight of the probe, which is in qualitative agreement with theories of homogeneous gel networks.

2.
Int J Pharm ; 621: 121785, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500690

RESUMO

Subcutaneous injection is one of the most common approaches for administering biopharmaceuticals unsuitable for oral delivery. However, there is a lack of methods to predict the behavior of biopharmaceuticals within the extracellular matrix of the subcutaneous tissue. In this work, we present a novel miniaturized microfluidic-based in vitro method able to investigate interactions between drug molecules and the polymers of the subcutaneous extracellular matrix. To validate the method, microgels consisting of, respectively, covalently cross-linked hyaluronic acid, polyacrylic acid, and commercially available DC Bead™, were exposed to three model substances: cytochrome C, protamine sulfate and amitriptyline hydrochloride. These components were chosen to include systems with widely different physiochemical properties (charge, size, self-assembly, etc.) The experimental results were compared with theoretical predictions from a gel model developed earlier. The results show that the method is suitable as a rapid screening method for automated, large-scale, probing of interactions between biopolymers and drug molecules, with small consumption of material.


Assuntos
Produtos Biológicos , Microgéis , Microfluídica , Peptídeos , Polieletrólitos
3.
Biomicrofluidics ; 13(4): 044101, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31312286

RESUMO

Production of cell-laden hydrogel droplets as miniaturized niches for 3D cell culture provides a new route for cell-based assays. Such production can be enabled by droplet microfluidics and here we present a droplet trapping system based on bulk acoustic waves for handling hydrogel droplets in a continuous flow format. The droplet trapping system consists of a glass capillary equipped with a small piezoelectric transducer. By applying ultrasound (4 MHz), a localized acoustic standing wave field is generated in the capillary, trapping the droplets in a well-defined cluster above the transducer area. The results show that the droplet cluster can be retained at flow rates of up to 76 µl/min, corresponding to an average flow speed of 3.2 mm/s. The system allows for important operations such as continuous perfusion and/or addition of chemical reagents to the encapsulated cells with in situ optical access. This feature is demonstrated by performing on-chip staining of the cell nuclei. The key advantages of this trapping method are that it is label-free and gentle and thus well-suited for biological applications. Moreover, the droplets can easily be released on-demand, which facilitates downstream analysis. It is envisioned that the presented droplet trapping system will be a valuable tool for a wide range of multistep assays as well as long-term monitoring of cells encapsulated in gel-based droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA