Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 66, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327557

RESUMO

BACKGROUND: The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS: Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS: Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.


Assuntos
Ácidos Graxos , Estudo de Associação Genômica Ampla , Fígado , Locos de Características Quantitativas , Animais , Ácidos Graxos/metabolismo , Fígado/metabolismo , Suínos/metabolismo , Suínos/genética , Metabolismo dos Lipídeos/genética , Sus scrofa/genética , Sus scrofa/metabolismo , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , Tecido Adiposo/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
2.
Genet Sel Evol ; 56(1): 12, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347496

RESUMO

BACKGROUND: Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome profiles of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor (RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance of our findings. RESULTS: For this purpose, we used LD RNA-Seq and intramuscular FA composition profiles of 129 Iberian × Duroc backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, C18:0, and C16:1n-7) that were among the most interconnected variables in the predicted network. The detected FA-correlated genes include genes involved in lipid and/or carbohydrate metabolism or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR, IDH3A, LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 54 over-represented gene ontology terms, including well-known biological processes and pathways that regulate lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either positively or negatively) with C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, and that of CARHSP1 correlated (positively) with the C16:1n-7 lipokine. We also found that these two transcription factors share target genes that are involved in lipid metabolism (e.g., GOT1, PLIN1, and TFRC). CONCLUSIONS: This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable information about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some transcription factors are proposed to control gene expression and modulate FA composition differences.


Assuntos
Ácidos Graxos , Músculo Esquelético , Suínos/genética , Animais , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Genes Reguladores , Transcriptoma
4.
mSystems ; 9(1): e0104923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095419

RESUMO

The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.


Assuntos
Microbioma Gastrointestinal , Microbiota , Suínos , Animais , Ácidos Graxos , Ácidos Graxos Voláteis/metabolismo , Bactérias , Ácido Butírico , Akkermansia/metabolismo , Bacteroidetes/metabolismo , Biomarcadores
5.
Microbiol Spectr ; 11(4): e0527122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37255458

RESUMO

Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.


Assuntos
Estudo de Associação Genômica Ampla , Microbiota , Suínos , Animais , Variações do Número de Cópias de DNA , Genoma , Fenótipo , Microbiota/genética , Bactérias/genética
6.
Sci Rep ; 13(1): 535, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631502

RESUMO

Fatty acids (FAs) play an essential role as mediators of cell signaling and signal transduction, affecting metabolic homeostasis and determining meat quality in pigs. However, FAs are transformed by the action of several genes, such as those encoding desaturases and elongases of FAs in lipogenic tissues. The aim of the current work was to identify candidate genes, biological processes, and pathways involved in the modulation of intramuscular FA profile from longissimus dorsi muscle. FA profile by gas chromatography of methyl esters and gene expression by RNA-Seq were determined in 129 Iberian × Duroc backcrossed pigs. An association analysis between the muscle transcriptome and its FA profile was performed, followed by a concordance and functional analysis. Overall, a list of well-known (e.g., PLIN1, LEP, ELOVL6, SC5D, NCOA2, ACSL1, MDH1, LPL, LGALS12, TFRC, GOT1, and FBP1) and novel (e.g., TRARG1, TANK, ENSSSCG00000011196, and ENSSSCG00000038429) candidate genes was identified, either in association with specific or several FA traits. Likewise, several of these genes belong to biological processes and pathways linked to energy, lipid, and carbohydrate metabolism, which seem determinants in the modulation of FA compositions. This study can contribute to elucidate the complex relationship between gene expression and FA profile in pig muscle.


Assuntos
Ácidos Graxos , Músculo Esquelético , Suínos , Animais , Músculo Esquelético/metabolismo , RNA-Seq , Ácidos Graxos/metabolismo , Transcriptoma , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA