Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 18(7): e0288581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440532

RESUMO

PURPOSE: To assess the ability of a new posterior pole protocol to detect areas with significant differences in retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness in patients with multiple sclerosis versus healthy control subjects; in addition, to assess the correlation between RNFL and GCL thickness, disease duration, and the Expanded Disability Status Scale (EDSS). METHODS: We analyzed 66 eyes of healthy control subjects and 100 eyes of remitting-relapsing multiple sclerosis (RR-MS) patients. Double analysis based on first clinical symptom onset (CSO) and conversion to clinically definite MS (CDMS) was performed. The RR-MS group was divided into subgroups by CSO and CDMS year: CSO-1 (≤ 5 years) and CSO-2 (≥ 6 years), and CDMS-1 (≤ 5 years) and CDMS-2 (≥ 6 years). RESULTS: Significant differences in RNFL and GCL thickness were found between the RR-MS group and the healthy controls and between the CSO and CDMS subgroups and in both layers. Moderate to strong correlations were found between RNFL and GCL thickness and CSO and CDMS. Furthermore, we observed a strong correlation with EDSS 1 year after the OCT examination. CONCLUSIONS: The posterior pole protocol is a useful tool for assessing MS and can reveal differences even in early stages of the disease. RNFL thickness shows a strong correlation with disability status, while GCL thickness correlates better with disease duration.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Células Ganglionares da Retina , Fibras Nervosas , Tomografia de Coerência Óptica/métodos , Retina
2.
PLoS One ; 15(12): e0243236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33290417

RESUMO

PURPOSE: To investigate superficial retinal microvascular plexuses detected by optical coherence tomography angiography (OCT-A) in multiple sclerosis (MS) subjects and compare them with healthy controls. METHODS: A total of 92 eyes from 92 patients with relapsing-remitting MS and 149 control eyes were included in this prospective observational study. OCT-A imaging was performed using Triton Swept-Source OCT (Topcon Corporation, Japan). The vessel density (VD) percentage in the superficial retinal plexus and optic disc area (6 x 6 mm grid) was measured and compared between groups. RESULTS: MS patients showed a significant decrease VD in the superior (p = 0.005), nasal (p = 0.029) and inferior (p = 0.040) parafoveal retina compared with healthy subjects. Patients with disease durations of more than 5 years presented lower VD in the superior (p = 0.002), nasal (p = 0.017) and inferior (p = 0.022) parafoveal areas compared with healthy subjects. Patients with past optic neuritis episodes did not show retinal microvasculature alterations, but patients with an EDSS score of less than 3 showed a significant decrease in nasal (p = 0.024) and superior (p = 0.006) perifoveal VD when compared with healthy subjects. CONCLUSIONS: MS produces a decrease in retinal vascularization density in the superficial plexus of the parafoveal retina. Alterations in retinal vascularization observed in MS patients are independent of the presence of optic nerve inflammation. OCT-A has the ability to detect subclinical vascular changes and is a potential biomarker for diagnosing the presence and progression of MS.


Assuntos
Esclerose Múltipla/complicações , Disco Óptico/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Adulto , Angiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Disco Óptico/diagnóstico por imagem , Tomografia de Coerência Óptica
3.
Comput Biol Med ; 111: 103357, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31326867

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Many studies of MS patients have described axonal loss in the optic nerve of the retina, and specifically progressive thinning of the retinal nerve fiber layer (RNFL). We hypothesize that RNFL thinning involves the participation of 2 processes that cause CNS damage: autoimmune inflammation and axonal degeneration. To test this hypothesis, we developed a mathematical model based on ordinary differential equations to relate the evolution of RNFL thickness (measured by optical coherence tomography [OCT]) with that of the Expanded Disability Status Scale (EDSS) score in MS patients. Data were obtained from a longitudinal study of 114 MS patients who were followed-up for 10 years. After adjusting the parameters using a genetic algorithm, the model's prediction of the evolution of RNFL thickness accurately reflected the progression revealed by the 10-year clinical data. Our findings suggest that differences in the relative contributions of autoimmune inflammation and axonal degeneration can account for the complex dynamics of MS, which vary from one patient to the next. Moreover, our results show that CNS damage occurs cumulatively from the onset of MS and that most RNFL thinning occurs before the appearance of significant disability. RNFL thickness could therefore serve as a reliable biomarker of MS disease course. Our proposed methodology would enable the use of OCT data from new MS patients to predict the evolution of RNFL thinning and hence the progression of MS in individual patients, and to facilitate the selection of patient-specific therapies.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Esclerose Múltipla , Fibras Nervosas/patologia , Retina , Adulto , Algoritmos , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/patologia , Retina/diagnóstico por imagem , Retina/patologia , Tomografia de Coerência Óptica/métodos
4.
PLoS One ; 14(5): e0216410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31059539

RESUMO

OBJECTIVE: To compare axonal loss in ganglion cells detected with swept-source optical coherence tomography (SS-OCT) in eyes of patients with multiple sclerosis (MS) versus healthy controls using different machine learning techniques. To analyze the capability of machine learning techniques to improve the detection of retinal nerve fiber layer (RNFL) and the complex Ganglion Cell Layer-Inner plexiform layer (GCL+) damage in patients with multiple sclerosis and to use the SS-OCT as a biomarker to early predict this disease. METHODS: Patients with relapsing-remitting MS (n = 80) and age-matched healthy controls (n = 180) were enrolled. Different protocols from the DRI SS-OCT Triton system were used to obtain the RNFL and GCL+ thicknesses in both eyes. Macular and peripapilar areas were analyzed to detect the zones with higher thickness decrease. The performance of different machine learning techniques (decision trees, multilayer perceptron and support vector machine) for identifying RNFL and GCL+ thickness loss in patients with MS were evaluated. Receiver-operating characteristic (ROC) curves were used to display the ability of the different tests to discriminate between MS and healthy eyes in our population. RESULTS: Machine learning techniques provided an excellent tool to predict MS disease using SS-OCT data. In particular, the decision trees obtained the best prediction (97.24%) using RNFL data in macular area and the area under the ROC curve was 0.995, while the wide protocol which covers an extended area between macula and papilla gave an accuracy of 95.3% with a ROC of 0.998. Moreover, it was obtained that the most significant area of the RNFL to predict MS is the macula just surrounding the fovea. On the other hand, in our study, GCL+ did not contribute to predict MS and the different machine learning techniques performed worse in this layer than in RNFL. CONCLUSIONS: Measurements of RNFL thickness obtained with SS-OCT have an excellent ability to differentiate between healthy controls and patients with MS. Thus, the use of machine learning techniques based on these measures can be a reliable tool to help in MS diagnosis.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Macula Lutea/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica , Adulto , Estudos Transversais , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA