Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(35): 24476-24492, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39169891

RESUMO

Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode-electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.

2.
Nat Commun ; 15(1): 2991, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582753

RESUMO

All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.

3.
J Am Chem Soc ; 144(13): 5795-5811, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325534

RESUMO

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60 °C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.

4.
Nat Commun ; 12(1): 1256, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623048

RESUMO

Rechargeable solid-state sodium-ion batteries (SSSBs) hold great promise for safer and more energy-dense energy storage. However, the poor electrochemical stability between current sulfide-based solid electrolytes and high-voltage oxide cathodes has limited their long-term cycling performance and practicality. Here, we report the discovery of the ion conductor Na3-xY1-xZrxCl6 (NYZC) that is both electrochemically stable (up to 3.8 V vs. Na/Na+) and chemically compatible with oxide cathodes. Its high ionic conductivity of 6.6 × 10-5 S cm-1 at ambient temperature, several orders of magnitude higher than oxide coatings, is attributed to abundant Na vacancies and cooperative MCl6 rotation, resulting in an extremely low interfacial impedance. A SSSB comprising a NaCrO2 + NYZC composite cathode, Na3PS4 electrolyte, and Na-Sn anode exhibits an exceptional first-cycle Coulombic efficiency of 97.1% at room temperature and can cycle over 1000 cycles with 89.3% capacity retention at 40 °C. These findings highlight the immense potential of halides for SSSB applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA