Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(18): 4489-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38644661

RESUMO

Orthopedic device-related infection (ODRI) poses a significant threat to patients with titanium-based implants. The challenge lies in developing antibacterial surfaces that preserve the bulk mechanical properties of titanium implants while exhibiting characteristics similar to bone tissue. In response, we present a two-step approach: silver nanoparticle (AgNP) coating followed by selective laser-assisted surface alloying on commonly used titanium alumina vanadium (TiAl6V4) implant surfaces. This process imparts antibacterial properties without compromising the bulk mechanical characteristics of the titanium alloy. Systematic optimization of laser beam power (8-40 W) resulted in an optimized surface (32 W) with uniform TiAg alloy formation. This surface displayed a distinctive hierarchical mesoporous textured surface, featuring cauliflower-like nanostructures measuring between 5-10 nm uniformly covering spatial line periods of 25 µm while demonstrating homogenous elemental distribution of silver throughout the laser processed surface. The optimized laser processed surface exhibited prolonged superhydrophilicity (40 days) and antibacterial efficacy (12 days) against Staphylococcus aureus and Escherichia coli. Additionally, there was a significant twofold increase in bone mineralization compared to the pristine Ti6Al4V surface (p < 0.05). Rockwell hardness tests confirmed minimal (<1%) change in bulk mechanical properties compared to the pristine surface. This innovative laser-assisted approach, with its precisely tailored surface morphology, holds promise for providing enduring antibacterial and osteointegration properties, rendering it an optimal choice for modifying load-bearing implant devices without altering material bulk characteristics.


Assuntos
Ligas , Antibacterianos , Escherichia coli , Lasers , Próteses e Implantes , Prata , Staphylococcus aureus , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Animais , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Calcificação Fisiológica/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37799507

RESUMO

Inflammatory bowel disease (IBD) has become alarmingly prevalent in the last two decades affecting 6.8 million people worldwide with a starkly high relapse rate of 40% within 1 year of remission. Existing visual endoscopy techniques rely on subjective assessment of images that are error-prone and insufficient indicators of early-stage IBD, rendering them unsuitable for frequent and quantitative monitoring of gastrointestinal health necessary for detecting regular relapses in IBD patients. To address these limitations, we have implemented a miniaturized smart capsule (2.2 cm × 11 mm) that allows monitoring reactive oxygen species (ROS) levels as a biomarker of inflammation for quantitative and frequent profiling of inflammatory lesions throughout the gastrointestinal tract. The capsule is composed of a pH and oxidation reduction potential (ORP) sensor to track the capsule's location and ROS levels throughout the gastrointestinal tract, respectively, and an optimized electronic interface for wireless sensing and data communication. The designed sensors provided a linear and stable performance within the physiologically relevant range of the GI tract (pH: 1-8 and ORP: -500 to +500 mV). Additionally, systematic design optimization of the wireless interface electronics offered an efficient sampling rate of 10 ms for long-running measurements up to 48 h for a complete evaluation of the entire gastrointestinal tract. As a proof-of-concept, the capsule the capsule's performance in detecting inflammation risks was validated by conducting tests on in vitro cell culture conditions, simulating healthy and inflamed gut-like environments. The capsule presented here achieves a new milestone in addressing the emerging need for smart ingestible electronics for better diagnosis and treatment of digestive diseases.

3.
Sci Rep ; 13(1): 3101, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813820

RESUMO

For a continuous healthcare or environmental monitoring system, it is essential to reliably sense the analyte concentration reported by electrochemical sensors. However, environmental perturbation, sensor drift, and power-constraint make reliable sensing with wearable and implantable sensors difficult. While most studies focus on improving sensor stability and precision by increasing the system's complexity and cost, we aim to address this challenge using low-cost sensors. To obtain the desired accuracy from low-cost sensors, we borrow two fundamental concepts from communication theory and computer science. First, inspired by reliable data transmission over a noisy communication channel by incorporating redundancy, we propose to measure the same quantity (i.e., analyte concentration) with multiple sensors. Second, we estimate the true signal by aggregating the output of the sensors based on their credibility, a technique originally developed for "truth discovery" in social sensing applications. We use the Maximum Likelihood Estimation to estimate the true signal and the credibility index of the sensors over time. Using the estimated signal, we develop an on-the-fly drift-correction method to make unreliable sensors reliable by correcting any systematic drifts during operation. Our approach can determine solution pH within 0.09 pH for more than three months by detecting and correcting the gradual drift of pH sensors as a function of gamma-ray irradiation. In the field study, we validate our method by measuring nitrate levels in an agricultural field onsite over 22 days within 0.06 mM of a high-precision laboratory-based sensor. We theoretically demonstrate and numerically validate that our approach can estimate the true signal even when the majority (~ 80%) of the sensors are unreliable. Moreover, by restricting wireless transmission to high-credible sensors, we achieve near-perfect information transfer at a fraction of the energy cost. The high-precision sensing with low-cost sensors at reduced transmission cost will pave the way for pervasive in-field sensing with electrochemical sensors. The approach is general and can improve the accuracy of any field-deployed sensors undergoing drift and degradation during operation.

4.
Acta Biomater ; 154: 83-96, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162763

RESUMO

The gastrointestinal (GI) tract, particularly the colon region, holds a highly diverse microbial community that plays an important role in the metabolism, physiology, nutrition, and immune function of the host body. Accumulating evidence has revealed that alteration in these microbial communities is the pivotal step in developing various metabolic diseases, including obesity, inflammatory bowel disease (IBD), and colorectal cancer. However, there is still a lack of clear understanding of the interrelationship between microbiota and diet as well as the effectiveness of chemoprevention strategies, including pre and probiotic agents in modifying the colonic microbiota and preventing digestive diseases. Existing methods for assessing these microbiota-diet interactions are often based on samples collected from the feces or endoscopy techniques which are incapable of providing information on spatial variations of the gut microbiota or are considered invasive procedures. To address this need, here we have developed an electronic-free smart capsule that enables site-specific sampling of the gut microbiome within the proximal colon region of the GI tract. The 3D printed device houses a superabsorbent hydrogel bonded onto a flexible polydimethylsiloxane (PDMS) disk that serves as a milieu to collect the fluid in the gut lumen and its microbiome by rapid swelling and providing the necessary mechanical actuation to close the capsule after the sampling is completed. The targeted colonic sampling is achieved by coating the sampling aperture on the capsule with a double-layer pH-sensitive enteric coating, which delays fluid in the lumen from entering the capsule until it reaches the proximal colon of the GI tract. To identify the appropriate pH-responsive double-layer coating and processing condition, a series of systematic dissolution characterizations in different pH conditions that mimicked the GI tract was conducted. The effective targeted microbial sampling performance and preservation of the smart capsule with the optimized design were validated using both realistic in vitro GI tract models with mixed bacteria cultures and in vivo with pigs as an animal model. The results from 16s rRNA and WideSeq analysis in both in vitro and in vivo studies showed that the bacterial population sampled within the retrieved capsule closely matched the bacterial population within the targeted sampling region (proximal colon). Herein, it is envisioned that such smart sampling capsule technology will provide new avenues for gastroenterological research and clinical applications, including diet-host-microbiome relationships, focused on human GI function and health. STATEMENT OF SIGNIFICANCE: The colonic microbiota plays a major role in the etiology of numerous diseases. Extensive efforts have been conducted to monitor the gut microbiome using sequencing technologies based on samples collected from feces or mucosal biopsies that are typically obtained by colonoscopy. Despite the simplicity of fecal sampling procedures, they are incapable of preserving spatial and temporal information about the bacteria through the gastrointestinal (GI) tract. In contrast, colonoscopy is an invasive and impractical approach to frequently assess the effect of dietary and therapeutic intake on the microbiome and their impact on the health of the patient. Here, we developed a non-invasive capsule that enables targeted sampling from the ascending colon, thereby providing crucial information for disease prediction and monitoring.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Suínos , Animais , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/fisiologia , Colo , Fezes/microbiologia , Bactérias
5.
ACS Sens ; 7(9): 2661-2670, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36074898

RESUMO

Originally developed for use in controlled laboratory settings, potentiometric ion-selective electrode (ISE) sensors have recently been deployed for continuous, in situ measurement of analyte concentration in agricultural (e.g., nitrate), environmental (e.g., ocean acidification), industrial (e.g., wastewater), and health-care sectors (e.g., sweat sensors). However, due to uncontrolled temperature and lack of frequent calibration in these field applications, it has been difficult to achieve accuracy comparable to the laboratory setting. In this paper, we propose a novel temperature self-calibration method where the ISE sensors can serve as their own thermometer and therefore precisely measure the analyte concentration in the field condition by compensating for the temperature variations. We validate the method with controlled experiments using pH and nitrate ISEs, which use the Nernst principle for electrochemical sensing. We show that, using temperature self-calibration, pH and nitrate can be measured within 0.3% and 5% of the true concentration, respectively, under varying concentrations and temperature conditions. Moreover, we perform a field study to continuously monitor the nitrate concentration of an agricultural field over a period of 6 days. Our temperature self-calibration approach determines the nitrate concentration within 4% of the ground truth measured by laboratory-based high-precision nitrate sensors. Our approach is general and would allow battery-free temperature-corrected analyte measurement for all Nernst principle-based sensors being deployed as wearable or implantable sensors.


Assuntos
Eletrodos Seletivos de Íons , Nitratos , Calibragem , Concentração de Íons de Hidrogênio , Nitratos/análise , Água do Mar , Temperatura , Águas Residuárias
6.
Sci Rep ; 12(1): 13927, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977975

RESUMO

The problematic combination of a rising prevalence of skin and soft tissue infections and the growing rate of life-threatening antibiotic resistant infections presents an urgent, unmet need for the healthcare industry. These evolutionary resistances originate from mutations in the bacterial cell walls which prevent effective diffusion of antibiotics. Gram-negative bacteria are of special consideration due to the natural resistance to many common antibiotics due to the unique bilayer structure of the cell wall. The system developed here provides one solution to this problem through a wearable therapy that delivers and utilizes gaseous ozone as an adjunct therapy with topical antibiotics through a novel dressing with drug-eluting nanofibers (NFs). This technology drastically increases the sensitivity of Gram-negative bacteria to common antibiotics by using oxidative ozone to bypass resistances created by the bacterial cell wall. To enable simple and effective application of adjunct therapy, ozone delivery and topical antibiotics have been integrated into a single application patch. The drug delivery NFs are generated via electrospinning in a fast-dissolve PVA mat without inducing decreasing gas permeability of the dressing. A systematic study found ozone generation at 4 mg/h provided optimal ozone levels for high antimicrobial performance with minimal cytotoxicity. This ozone treatment was used with adjunct therapy delivered by the system in vitro. Results showed complete eradication of Gram-negative bacteria with ozone and antibiotics typically used only for Gram-positive bacteria, which showed the strength of ozone as an enabling adjunct treatment option to sensitize bacteria strains to otherwise ineffective antibiotics. Furthermore, the treatment is shown through biocompatibility testing to exhibit no cytotoxic effect on human fibroblast cells.


Assuntos
Infecções por Bactérias Gram-Negativas , Ozônio , Dispositivos Eletrônicos Vestíveis , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Ozônio/farmacologia , Ozônio/uso terapêutico
7.
Sci Rep ; 12(1): 8011, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568779

RESUMO

Precision Agriculture (PA) is an integral component of the contemporary agricultural revolution that focuses on enhancing food productivity in proportion to the increasing global population while minimizing resource waste. While the recent advancements in PA, such as the integration of IoT (Internet of Things) sensors, have significantly improved the surveillance of field conditions to achieve high yields, the presence of batteries and electronic chips makes them expensive and non-biodegradable. To address these limitations, for the first time, we have developed a fully Degradable Intelligent Radio Transmitting Sensor (DIRTS) that allows remote sensing of subsoil volumetric water using drone-assisted wireless monitoring. The device consists of a simple miniaturized resonating antenna encapsulated in a biodegradable polymer material such that the resonant frequency of the device is dependent on the dielectric properties of the soil surrounding the encapsulated structure. The simple structure of DIRTS enables scalable additive manufacturing processes using cost-effective, biodegradable materials to fabricate them in a miniaturized size, thereby facilitating their automated distribution in the soil. As a proof-of-concept, we present the use of DIRTS in lab and field conditions where the sensors demonstrate the capability to detect volumetric water content within the range of 3.7-23.5% with a minimum sensitivity of 9.07 MHz/%. Remote sensing of DIRTS can be achieved from an elevation of 40 cm using drones to provide comparable performance to lab measurements. A systematic biodegradation study reveals that DIRTS can provide stable readings within the expected duration of 1 year with less than 4% change in sensitivity before signs of degradation. DIRTS provides a new steppingstone toward advancing precision agriculture while minimizing the environmental footprint.


Assuntos
Agricultura , Solo , Coleta de Dados , Água , Tecnologia sem Fio
8.
ACS Sens ; 7(4): 960-971, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35333058

RESUMO

During the γ-radiation sterilization process, the levels of radiation exposure to a medical device must be carefully monitored to achieve the required sterilization without causing deleterious effects on its intended physical and chemical properties. To address this issue, here we have demonstrated the development of an all-printed disposable low-cost sensor that exploits the change in electrical impedance of a semi-interpenetrating polymer network (SIPN) composed of poly(vinyl alcohol) (PVA) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as a functional polymer composite for radiation sterilization monitoring applications. Specifically, the PEDOT:PSS acts as the electrically conductive medium, while the PVA provides the ductility and stability of the printed sensors. During irradiation exposure, chain scission and cross-linking events occur concurrently in the PEDOT:PSS and PVA polymer chains, respectively. The concurrent scissoring of the PEDOT polymer and cross-linking of the PVA polymer network leads to the formation of a stable SIPN with reduced electrical conductivity, which was verified through FTIR, Raman, and TGA analysis. Systematic studies of different ratios of PEDOT:PSS and PVA mixtures were tested to identify the optimal ratio that provided the highest radiation sensitivity and stability performance. The results showed that PEDOT:PSS/PVA composites with 10 wt % PVA produced sensors with relative impedance changes of 30% after 25 kGy and up to 370% after 53 kGy (which are two of the most commonly used radiation exposure levels for sterilization applications). This composition showed high electrical impedance stability with less than ±5% change over 18 days after irradiation exposure. These findings demonstrate the feasibility of utilizing a printing technology for scalable manufacturing of low-cost, flexible radiation sensors for more effective monitoring of radiation sterilization processes.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Polímeros/química , Esterilização
9.
ACS Appl Mater Interfaces ; 14(7): 9697-9710, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142483

RESUMO

Many commercially available pH sensors are fabricated with a glass membrane as the sensing component because of several advantages of glass-based electrodes such as versatility, high accuracy, and excellent stability in various conditions. However, because of their bulkiness and poor mechanical properties, conventional glass-based sensors are not ideal for wearable or flexible applications. Here, we report for the first time the fabrication of a flexible glass-based pH sensor suitable for biomedical and environmental applications where flexibility and stability of the sensor are critical for long-term and real-time monitoring. The sensor was fabricated via a simple and facile approach using the cold atmospheric plasma technique in which a pH sensitive silica coating was deposited from a siloxane precursor onto a carbon electrode. In order to increase the sensitivity and stability of the sensor, we employed a postprocessing step which involves annealing of the silica coated electrode at elevated temperatures. This process was optimized to ensure that the crucial properties such as porosity and hydration functionality were balanced to obtain the best and most reliable sensitivity of the sensor. Our sensitivity test results indicated that these sensors exhibit excellent and stable sensitivity with a slope of about 48 mV/pH (r2 = 0.998) and selectivity across a pH range of 4 to 10 in the presence of various cations. The optimized sensor has shown stable sensitivity for a long period of time (30 h of immersion) and in different bending conditions. We demonstrate in this investigation that this flexible cost-effective pH sensor can withstand the sterilization process resulting from ultraviolet radiation and shows repeatable sensitivity with less than ±5 mV potential drift from the sensitivity values of the standard optimized sensor.

10.
IEEE Trans Biomed Eng ; 69(1): 96-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101580

RESUMO

Traditional Potentiometric Ion-selective Electrodes (ISE) are widely used in industrial and clinical settings. The simplicity and small footprint of ISE have encouraged their recent adoption as wearable/implantable sensors for personalized healthcare and precision agriculture, creating a new set of unique challenges absent in traditional ISE. In this paper, we develop a fundamental physics-based model to describe both steady-state and transient responses of ISE relevant for wearable/implantable sensors. The model is encapsulated in a "generalized Nernst formula" that explicitly accounts for the analyte density, time-dynamics of signal transduction, ion-selective membrane thickness, and other sensor parameters. The formula is validated numerically by self-consistent modeling of multispecies ion-transport and experimentally by interpreting the time dynamics and thickness dependence of thin-film solid-contact and graphene-based ISE sensors for measuring soil nitrate concentration. These fundamental results will support the accelerated development of ISE for wearable/implantable applications.


Assuntos
Eletrodos Seletivos de Íons , Dispositivos Eletrônicos Vestíveis , Potenciometria
11.
Lab Chip ; 22(1): 57-70, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34826326

RESUMO

Although serum and fecal biomarkers (e.g., lactoferrin, and calprotectin) have been used in management and distinction between inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), none are proven to be a differential diagnostic tool between Crohn's disease (CD) and ulcerative colitis (UC). The main challenge with laboratory-based biomarkers in the stool test is the inability to indicate the location of the disease/inflammation in the gastrointestinal (GI) tract due to the homogenous nature of the collected fecal sample. For the first time, we have designed and developed a battery-free smart capsule that will allow targeted sampling of inflammatory biomarkers inside the gut lumen of the small intestine. The capsule is designed to provide a simple and non-invasive complementary tool to fecal biomarker analysis to differentiate the type of IBD by pinpointing the site of inflammatory biomarkers secretion (e.g., small or large bowel) throughout the GI tract. The capsule takes advantage of the rapid change from an acidic environment in the stomach to higher pH levels in the small intestine to dissolve a pH-sensitive polymeric coating as a means to activate the sampling process of the capsule within the small intestine. A swelling polyacrylamide hydrogel is placed inside the capsule as a milieu to collect the sampled GI fluid while also providing the required mechanical actuation to close the capsule once the sampling is completed. The hydrogel component along with the collected GI fluid can be easily obtained from the capsule through the screw-cap design for further extraction and analysis. As a proof of concept, the capsule's performance in sampling and extraction of bovine serum albumin (BSA) and calprotectin - a key biomarker of inflammation - was assessed within the physiologically relevant ranges. The ratio of extracted biomarkers relative to that in the initial sampling environment remained constant (∼3%) and independent of the sampling matrix in both in vitro and ex vivo studies. It is believed that the demonstrated technology will provide immediate impact in more effective IBD type differential diagnostic and treatment strategies by providing a non-invasive assessment of inflammation biomarkers profile throughout the digestive tract.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Biomarcadores , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Intestino Delgado , Complexo Antígeno L1 Leucocitário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA