Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826250

RESUMO

Recent studies showed an interphase chromosome architecture, --- a specific coiled nucleosome structure, --- derived from cryo-preserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here we provide additional insights and details into the coiled nucleosome chromosome architectures. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale re-organization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture. Significance Statement: This study places all 46 sequenced human chromosomes, --- correctly filled with nucleosomes and in micron sized chromosome territories - into 10micron (average sized) nuclei. The chromosome architecture used a helical nucleosome coiled structure discerned from cryo-EM tomography, as was recently published ( https://doi.org/10.1073/pnas.2119101119 ). This chromosome architecture was further modeled to dynamic structures, structure variations and chromosome replication centromere complications. Finally, this chromosome architecture was modified to allow seamless transition through the cell cycle.

2.
Proc Natl Acad Sci U S A ; 119(26): e2119101119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749363

RESUMO

Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-µm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.


Assuntos
Núcleo Celular , Cromossomos Humanos , Interfase , Núcleo Celular/genética , Cromatina/genética , Cromossomos Humanos/química , Humanos , Interfase/genética , Nucleossomos/química
3.
Proc Natl Acad Sci U S A ; 119(20): e2119107119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544689

RESUMO

A molecular architecture is proposed for a representative mitotic chromosome, human chromosome 10. This architecture is built on an interphase chromosome structure based on cryo-electron microscopy (cryo-EM) cellular tomography [J. Sedat et al., Proc. Natl. Acad. Sci. U.S.A., in press], thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle for mitotic chromosomes is specific coiling of the 11-nm nucleosome fiber into large scale, ∼200-nm interphase structures, a Slinky [https://en.wikipedia.org/wiki/Slinky; motif cited in S. Bowerman et al., eLife 10, e65587 (2021)], then further modified with subsequent additional coiling for the final mitotic chromosome structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well-known cytological configurations. In addition, proof is experimentally provided by digital PCR technology that G1 T cell nuclei are diploid with one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.


Assuntos
Cromossomos Humanos Par 10 , Empacotamento do DNA , Mitose , Nucleossomos , Núcleo Celular/genética , Cromossomos Humanos Par 10/química , Cromossomos Humanos Par 10/genética , Fase G1 , Humanos , Nucleossomos/química , Nucleossomos/genética , Reação em Cadeia da Polimerase , Linfócitos T/citologia
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876518

RESUMO

Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).


Assuntos
Microscopia Crioeletrônica/métodos , Entropia , Saccharomyces cerevisiae/citologia , Simulação por Computador , Células HEK293 , Humanos , Tomografia Computadorizada por Raios X
5.
Wellcome Open Res ; 6: 76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37283605

RESUMO

We have developed "Microscope-Cockpit" (Cockpit), a highly adaptable open source user-friendly Python-based Graphical User Interface (GUI) environment for precision control of both simple and elaborate bespoke microscope systems. The user environment allows next-generation near instantaneous navigation of the entire slide landscape for efficient selection of specimens of interest and automated acquisition without the use of eyepieces. Cockpit uses "Python-Microscope" (Microscope) for high-performance coordinated control of a wide range of hardware devices using open source software. Microscope also controls complex hardware devices such as deformable mirrors for aberration correction and spatial light modulators for structured illumination via abstracted device models. We demonstrate the advantages of the Cockpit platform using several bespoke microscopes, including a simple widefield system and a complex system with adaptive optics and structured illumination. A key strength of Cockpit is its use of Python, which means that any microscope built with Cockpit is ready for future customisation by simply adding new libraries, for example machine learning algorithms to enable automated microscopy decision making while imaging.

6.
Proc Natl Acad Sci U S A ; 117(44): 27374-27380, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077585

RESUMO

The complex environment of biological cells and tissues has motivated development of three-dimensional (3D) imaging in both light and electron microscopies. To this end, one of the primary tools in fluorescence microscopy is that of computational deconvolution. Wide-field fluorescence images are often corrupted by haze due to out-of-focus light, i.e., to cross-talk between different object planes as represented in the 3D image. Using prior understanding of the image formation mechanism, it is possible to suppress the cross-talk and reassign the unfocused light to its proper source post facto. Electron tomography based on tilted projections also exhibits a cross-talk between distant planes due to the discrete angular sampling and limited tilt range. By use of a suitably synthesized 3D point spread function, we show here that deconvolution leads to similar improvements in volume data reconstructed from cryoscanning transmission electron tomography (CSTET), namely a dramatic in-plane noise reduction and improved representation of features in the axial dimension. Contrast enhancement is demonstrated first with colloidal gold particles and then in representative cryotomograms of intact cells. Deconvolution of CSTET data collected from the periphery of an intact nucleus revealed partially condensed, extended structures in interphase chromatin.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Aumento da Imagem/métodos , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão e Varredura/métodos , Algoritmos , Linhagem Celular , Secções Congeladas , Coloide de Ouro , Humanos
7.
Optica ; 7(7): 802-812, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34277893

RESUMO

Rapid cryopreservation of biological specimens is the gold standard for visualizing cellular structures in their true structural context. However, current commercial cryo-fluorescence microscopes are limited to low resolutions. To fill this gap, we have developed cryoSIM, a microscope for 3D super-resolution fluorescence cryo-imaging for correlation with cryo-electron microscopy or cryo-soft X-ray tomography. We provide the full instructions for replicating the instrument mostly from off-the-shelf components and accessible, user-friendly, open-source Python control software. Therefore, cryoSIM democratizes the ability to detect molecules using super-resolution fluorescence imaging of cryopreserved specimens for correlation with their cellular ultrastructure.

8.
Proc Natl Acad Sci U S A ; 110(43): 17344-9, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106307

RESUMO

Four-dimensional fluorescence microscopy--which records 3D image information as a function of time--provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.


Assuntos
Entropia , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Razão Sinal-Ruído , Algoritmos , Animais , Linhagem Celular , Modelos Moleculares , Modelos Teóricos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nature ; 485(7398): 381-5, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22495304

RESUMO

In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C) and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.


Assuntos
RNA não Traduzido/genética , Inativação do Cromossomo X/genética , Cromossomo X/genética , Animais , Diferenciação Celular , DNA Intergênico/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Epigenômica , Feminino , Fibroblastos , Regulação da Expressão Gênica , Histonas/metabolismo , Hibridização in Situ Fluorescente , Masculino , Metilação , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante , Transcriptoma , Cromossomo X/química
10.
Opt Express ; 20(6): 6527-41, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418536

RESUMO

We model the effect of depth dependent spherical aberration caused by a refractive index mismatch between the mounting and immersion mediums in a 3D structured illumination microscope (SIM). We first derive a forward model that takes into account the effect of the depth varying aberrations on both the illumination and the detection processes. From the model, we demonstrate that depth dependent spherical aberration leads to loss of signal only due to its effect on the detection response of the system, while its effect on illumination leads to phase shifts between orders that can be handled computationally in the reconstruction process. Further, by using the model, we provide guidelines for optical corrections of aberrations with different complexities, and explain how the proposed corrections simplify the forward model. Finally, we show that it is possible to correct both illumination and detection aberrations using a deformable mirror only on the detection path of the microscope.


Assuntos
Artefatos , Aumento da Imagem/instrumentação , Lentes , Iluminação/instrumentação , Microscopia/instrumentação , Nefelometria e Turbidimetria/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Biológicos , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
12.
Ultramicroscopy ; 111(8): 1137-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21741915

RESUMO

Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment.


Assuntos
Tomografia com Microscopia Eletrônica/estatística & dados numéricos , Algoritmos , Animais , Centrossomo/ultraestrutura , Redes de Comunicação de Computadores , Gráficos por Computador , Drosophila/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/estatística & dados numéricos
13.
PLoS Biol ; 9(1): e1000574, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21264350

RESUMO

The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding patterns, but also radially. Specific MSL3-binding sites, the majority of which have been demonstrated earlier to be dosage compensated DNA sequences, located on the X chromosomes, and actively transcribed in interphase, are positioned at the periphery of mitotic chromosomes. This potentially describes a connection between the DNA/protein content of chromatin loci and their contribution to mitotic chromosome structure. Live high-resolution observations of consecutive condensation states in MSL3-GFP expressing cells could provide additional details regarding the condensation mechanisms.


Assuntos
Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Mitose , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromossomos de Insetos/ultraestrutura , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Masculino , Microscopia de Fluorescência , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Cromossomo X/metabolismo
14.
PLoS One ; 5(9): e12768, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20856676

RESUMO

Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10-30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples.


Assuntos
Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Drosophila/genética , Histonas/química , Microscopia de Fluorescência/métodos , Mitose , Animais , Estruturas Cromossômicas , Drosophila/química , Proteínas de Fluorescência Verde/química , Microscopia de Fluorescência/instrumentação
15.
Proc Natl Acad Sci U S A ; 107(37): 16016-22, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20705899

RESUMO

Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.


Assuntos
Microscopia de Fluorescência/métodos , Algoritmos , Animais , Sobrevivência Celular , Drosophila melanogaster/citologia , Saccharomyces cerevisiae/citologia , Software
16.
Opt Express ; 18(7): 6461-76, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389670

RESUMO

We address the problem of computational representation of image formation in 3D widefield fluorescence microscopy with depth varying spherical aberrations. We first represent 3D depth-dependent point spread functions (PSFs) as a weighted sum of basis functions that are obtained by principal component analysis (PCA) of experimental data. This representation is then used to derive an approximating structure that compactly expresses the depth variant response as a sum of few depth invariant convolutions pre-multiplied by a set of 1D depth functions, where the convolving functions are the PCA-derived basis functions. The model offers an efficient and convenient trade-off between complexity and accuracy. For a given number of approximating PSFs, the proposed method results in a much better accuracy than the strata based approximation scheme that is currently used in the literature. In addition to yielding better accuracy, the proposed methods automatically eliminate the noise in the measured PSFs.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Biofísica/métodos , Processamento de Imagem Assistida por Computador , Microscopia/métodos , Modelos Estatísticos , Óptica e Fotônica , Análise de Componente Principal , Reprodutibilidade dos Testes , Software
17.
J Struct Biol ; 171(2): 142-53, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20371381

RESUMO

Iterative reconstruction algorithms pose tremendous computational challenges for 3D Electron Tomography (ET). Similar to X-ray Computed Tomography (CT), graphics processing units (GPUs) offer an affordable platform to meet these demands. In this paper, we outline a CT reconstruction approach for ET that is optimized for the special demands and application setting of ET. It exploits the fact that ET is typically cast as a parallel-beam configuration, which allows the design of an efficient data management scheme, using a holistic sinogram-based representation. Our method produces speedups of about an order of magnitude over a previously proposed GPU-based ET implementation, on similar hardware, and completes an iterative 3D reconstruction of practical problem size within minutes. We also describe a novel GPU-amenable approach that effectively compensates for reconstruction errors resulting from the TEM data acquisition on (long) samples which extend the width of the parallel TEM beam. We show that the vignetting artifacts typically arising at the periphery of non-compensated ET reconstructions are completely eliminated when our method is employed.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
18.
Comput Methods Programs Biomed ; 98(3): 261-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19850372

RESUMO

Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction Technique (SIRT) are two iterative computed tomography reconstruction algorithms often used when the data contain a high amount of statistical noise, have been acquired from a limited angular range, or have a limited number of views. A popular mechanism to increase the rate of convergence of these types of algorithms has been to perform the correctional updates within subsets of the projection data. This has given rise to the method of Ordered Subsets EM (OS-EM) and the Simultaneous Algebraic Reconstruction Technique (SART). Commodity graphics hardware (GPUs) has shown great promise to combat the high computational demands incurred by iterative reconstruction algorithms. However, we find that the special architecture and programming model of GPUs add extra constraints on the real-time performance of ordered subsets algorithms, counteracting the speedup benefits of smaller subsets observed on CPUs. This gives rise to new relationships governing the optimal number of subsets as well as relaxation factor settings for obtaining the smallest wall-clock time for reconstruction-a factor that is likely application-dependent. In this paper we study the generalization of SIRT into Ordered Subsets SIRT and show that this allows one to optimize the computational performance of GPU-accelerated iterative algebraic reconstruction methods.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador , Software , Algoritmos , Humanos
19.
Proc SPIE Int Soc Opt Eng ; 75702010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24392198

RESUMO

A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

20.
Int J Parasitol ; 40(1): 123-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19766648

RESUMO

During its intra-erythrocytic development Plasmodium falciparum establishes a membrane network beyond its own limiting membrane in the cytoplasm of its host. These membrane structures play an important role in the trafficking of virulence proteins to the erythrocyte surface, however their ultrastructure is only partly defined and there is on-going debate regarding their origin, organisation and connectivity. We have used two whole cell imaging modalities to explore the topography of parasitised erythrocytes. Three-dimensional structured illumination microscopy provides resolution beyond the optical diffraction limit and permits analysis of fluorescently labelled whole cells. Immunoelectron tomography offers the possibility of high resolution imaging of individual ultrastructural features in a cellular context. Combined with serial sectioning and immunogold labelling, this technique permits precise mapping of whole cell architecture. We show that the P. falciparum exported secretory system comprises a series of modular units, comprising flattened cisternae, known as Maurer's clefts, tubular connecting elements, two different vesicle populations and electron-dense structures that have fused with the erythrocyte membrane. The membrane network is not continuous, pointing to an important role for vesicle-mediated transport in the delivery of cargo to different destinations in the host cell.


Assuntos
Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Plasmodium falciparum/ultraestrutura , Vacúolos/ultraestrutura , Animais , Membrana Celular , Tomografia com Microscopia Eletrônica , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Interações Hospedeiro-Parasita , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA