Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 27(3): 93, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35345325

RESUMO

BACKGROUND: Inhibition of human topoisomerase I (TOP1) by camptothecin and topotecan has been shown to reduce excessive transcription of PAMP (Pathogen-Associated Molecular Pattern)-induced genes in prior studies, preventing death from sepsis in animal models of bacterial and SARS-CoV-2 infections. The TOP1 catalytic activity likely resolves the topological constraints on DNA that encodes these genes to facilitate the transcription induction that leads to excess inflammation. The increased accumulation of TOP1-DNA covalent complex (TOP1cc) following DNA cleavage is the basis for the anticancer efficacy of the TOP1 poisons developed for anticancer treatment. The potential cytotoxicity and mutagenicity of TOP1 targeting cancer drugs pose serious concerns for employing them as therapies in sepsis prevention. METHODS: In this study we set up a novel yeast-based screening system that employs yeast strains expressing wild-type or a dominant lethal mutant recombinant human TOP1. The effect of test compounds on growth is monitored with and without overexpression of the recombinant human TOP1. RESULTS: This yeast-based screening system can identify human TOP1 poisons for anticancer efficacy as well as TOP1 suppressors that can inhibit TOP1 DNA binding or cleavage activity in steps prior to the formation of the TOP1cc. CONCLUSIONS: This yeast-based screening system can distinguish between TOP1 suppressors and TOP1 poisons. The assay can also identify compounds that are likely to be cytotoxic based on their effect on yeast cell growth that is independent of recombinant human TOP1 overexpression.


Assuntos
COVID-19 , Venenos , Animais , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Humanos , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Microorganisms ; 9(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401386

RESUMO

Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.

3.
ChemMedChem ; 15(7): 623-631, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043806

RESUMO

A topoisomerase-DNA transient covalent complex can be a druggable target for novel topoisomerase poison inhibitors that represent a new class of antibacterial or anticancer drugs. Herein, we have investigated molecular features of the functionally important Escherichia coli topoisomerase I (EctopoI)-DNA covalent complex (EctopoIcc) for molecular simulations, which is very useful in the development of new antibacterial drugs. To demonstrate the usefulness of our approach, we used a model small molecule (SM), NSC76027, obtained from virtual screening. We examined the direct binding of NSC76027 to EctopoI as well as inhibition of EctopoI relaxation activity of this SM via experimental techniques. We then performed molecular dynamics (MD) simulations to investigate the dynamics and stability of EctopoIcc and EctopoI-NSC76027-DNA ternary complex. Our simulation results show that NSC76027 forms a stable ternary complex with EctopoIcc. EctopoI investigated here also serves as a model system for investigating a complex of topoisomerase and DNA in which DNA is covalently attached to the protein.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA Bacteriano/efeitos dos fármacos , Desenvolvimento de Medicamentos , Escherichia coli/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
4.
PLoS One ; 14(2): e0207733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794538

RESUMO

We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 µM against Mycobacterium tuberculosis, SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis, resulting in greater than 5 Log10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 µM (4X MIC) concentration. Growth inhibition (MIC = 50 µM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus. Stepwise isolation of resistant mutants of M. smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC50 of 0.24 and 27 µM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of Mtb topoisomerase I.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Mycobacterium/efeitos dos fármacos , Oxazinas/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Resistência Microbiana a Medicamentos/genética , Fluoroquinolonas/química , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium/classificação , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/isolamento & purificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxazinas/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Sequenciamento Completo do Genoma
5.
Bioconjug Chem ; 29(4): 1006-1009, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29528223

RESUMO

Bacterial infections are serious health threats. Emerging drug resistance in bacteria further poses serious challenges to the treatment options involving traditional antibiotics. Antimicrobial polymers disrupt the physical cell membrane integrity of bacteria to address the drug resistance problems. Here, we introduce a conceptually new class of antimicrobial polymers containing positively charged guanylurea backbones for enhanced antimicrobial effects. The initial structure-activity relationship studies demonstrate that poly(guanylurea piperazine)s (PGU-Ps) exhibit excellent antimicrobial activity against different types of bacteria with high selectivity. The new design concept of using a positively charged guanylurea backbone will contribute to the development of future biocompatible, specific, and selective antimicrobial polymers.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Ureia/análogos & derivados , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Guanidinas/química , Humanos , Testes de Sensibilidade Microbiana , Polímeros/química , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/química , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA