RESUMO
Diamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films. Atomic force microscopy reveals a uniform coating of titanium and the formation of flattened molybdenum nanoparticles. A thin titanium film is completely oxidized upon contact with air and passes from the oxidized state to the carbide state upon annealing in an ultrahigh vacuum at 800 °C. Molybdenum interacts with the (111) diamond surface already at 500 °C, which leads to the carbidization of its nanoparticles and catalytic graphitization of the diamond surface. This process is much slower on the (100) diamond surface; sp2-hybridized carbon is formed on the diamond and the top of molybdenum carbide nanoparticles, only when the annealing temperature is raised to 800 °C. The conductivity of the resulting sample is improved when compared to the Ti-coated diamond substrates and the Mo-coated (111) substrate annealed at 800 °C. The presented results could be useful for the development of graphene-on-diamond electronics.
RESUMO
The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance.
RESUMO
Carbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of the synthesis and subsequent oxidation in air. It is shown that the addition of toluene in the reactor during the arcing allows obtaining CNHs functionalized with -CHx groups. Heating of CNHs in air at 400 °C leads to substitution of -CHx groups for oxygen-containing groups. Moreover, the CNH endcaps are opened at 500 °C, and as a result, the specific surface area of CNHs increases 4 times. Aqueous suspensions with a concentration of oxidized CNHs of 100 µg/mL are stable for 8 months.
RESUMO
Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor-acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.
RESUMO
Despite decades of study the precise behavior of bromine in graphitic carbons remains unclear. In this report, using Raman spectroscopy, we reveal two types of bromine structure in graphitic carbon materials. Between fluorinated graphene layers with a composition close to C2F, Br2 molecules are intercalated in a form similar to liquid bromine. Bromination of pristine and low-fluorinated graphitic carbons behaves very differently with distinct Br-related Raman spectra. With the guidance of density functional theory (DFT) calculations, all Raman features are assigned to normal vibration modes of specific bromine species over graphene and fluorinated graphene. When intercalated between extended non-fluorinated sp2-hybridized carbon regions, physisorbed Br2 molecules move freely across the non-functionalized region toward the CF border. Multiple Br2 molecules then combine spontaneously into Br3-based chains, whose coupling activates otherwise Raman inactive modes. Significant charge transfer to bromine species occurs in this case. DFT calculated frequencies match precisely the experimental Br-related Raman bands observed in the intercalation carbon compounds. The fluorine-catalyzed bromine chain-formation process shown here is general and should also operate with edges and other defect species.
RESUMO
The highly efficient C4 photosynthetic pathway is facilitated by 'Kranz' leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate - mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature.
Assuntos
Proteínas de Ligação a DNA/genética , Dosagem de Genes/fisiologia , Folhas de Planta/embriologia , Raízes de Plantas/embriologia , Zea mays/embriologia , Zea mays/genética , Proteínas de Arabidopsis/genética , Duplicação Gênica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Zíper de Leucina/genética , Família Multigênica/genética , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência , Zea mays/citologia , Zea mays/crescimento & desenvolvimentoRESUMO
We systematically studied the electromagnetic properties of carbon nanohorns (CNHs) and polystyrene composites filled with CNHs in static regime, low frequency and microwave regions. CNHs were synthesized using the direct current arc-discharge method using solid graphite rods and graphite rods filled by melamine mixed with graphite powder. Transmission electron microscopy and thermo-gravimetric analysis showed that CNH agglomerates are the main product, while the addition of melamine promotes the formation of graphite balls. Graphitic contamination causes the internal leakage of inter-agglomerate capacity, lowering the permittivity and enhancing the conductivity of composites. The permittivity of CNH/polystyrene composites increases with the filler fraction, and near the dielectric threshold electromagnetic characteristics of the composites exhibit critical behaviour. Our results suggest that CNHs with relatively high values of permittivity and contact resistance could be used as high-k materials.
RESUMO
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Assuntos
Linhagem da Célula/genética , Redes e Vias Metabólicas/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Compartimento Celular/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genéticaRESUMO
Using computational and theoretical approaches, we investigate the snap-through transition of buckled graphene membranes. Our main interest is related to the possibility of using the buckled membrane as a plate of capacitor with memory (memcapacitor). For this purpose, we performed molecular-dynamics (MD) simulations and elasticity theory calculations of the up-to-down and down-to-up snap-through transitions for membranes of several sizes. We have obtained expressions for the threshold switching forces for both up-to-down and down-to-up transitions. Moreover, the up-to-down threshold switching force was calculated using the density functional theory (DFT). Our DFT results are in general agreement with MD and analytical theory findings. Our systematic approach can be used for the description of other structures, including nanomechanical and biological ones, experiencing the snap-through transition.
RESUMO
The coordinated positioning of veins, mesophyll cells, and stomata across a leaf is crucial for efficient gas exchange and transpiration and, therefore, for overall function. In monocot leaves, stomatal cell files are positioned at the flanks of underlying longitudinal leaf veins, rather than directly above or below. This pattern suggests either that stomatal formation is inhibited in epidermal cells directly in contact with the vein or that specification is induced in cell files beyond the vein. The SHORTROOT pathway specifies distinct cell types around the vasculature in subepidermal layers of both root and shoots, with cell type identity determined by distance from the vein. To test whether the pathway has the potential to similarly pattern epidermal cell types, we expanded the expression domain of the rice (Oryza sativa ssp japonica) OsSHR2 gene, which we show is restricted to developing leaf veins, to include bundle sheath cells encircling the vein. In transgenic lines, which were generated using the orthologous ZmSHR1 gene to avoid potential silencing of OsSHR2, stomatal cell files were observed both in the normal position and in more distant positions from the vein. Contrary to theoretical predictions, and to phenotypes observed in eudicot leaves, the increase in stomatal density did not enhance photosynthetic capacity or increase mesophyll cell density. Collectively, these results suggest that the SHORTROOT pathway may coordinate the positioning of veins and stomata in monocot leaves and that distinct mechanisms may operate in monocot and eudicot leaves to coordinate stomatal patterning with the development of underlying mesophyll cells.