Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113475, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979173

RESUMO

Evoked brain oscillations in the gamma range have been shown to assist in stroke recovery. However, the causal relationship between evoked oscillations and neuroprotection is not well understood. We have used optogenetic stimulation to investigate how evoked gamma oscillations modulate cortical dynamics in the acute phase after stroke. Our results reveal that stimulation at 40 Hz drives activity in interneurons at the stimulation frequency and phase-locked activity in principal neurons at a lower frequency, leading to increased cross-frequency coupling. In addition, 40-Hz stimulation after stroke enhances interregional communication. These effects are observed up to 24 h after stimulation. Our stimulation protocol also rescues functional synaptic plasticity 24 h after stroke and leads to an upregulation of plasticity genes and a downregulation of cell death genes. Together these results suggest that restoration of cortical dynamics may confer neuroprotection after stroke.


Assuntos
Optogenética , Acidente Vascular Cerebral , Humanos , Neurônios/fisiologia , Interneurônios/fisiologia , Acidente Vascular Cerebral/terapia , Plasticidade Neuronal/fisiologia
2.
Front Neural Circuits ; 13: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001092

RESUMO

In mammalian neurons, small conductance calcium-activated potassium channels (SK channels) are activated by calcium influx and contribute to the afterhyperpolarization (AHP) that follows action potentials. Three types of SK channel, SK1, SK2 and SK3 are recognized and encoded by separate genes that are widely expressed in overlapping distributions in the mammalian brain. Expression of the rat genes, rSK2 and rSK3 generates functional ion channels that traffic to the membrane as homomeric and heteromeric complexes. However, rSK1 is not trafficked to the plasma membrane, appears not to form functional channels, and the role of rSK1 in neurons is not clear. Here, we show that rSK1 co-assembles with rSK2. rSK1 is not trafficked to the membrane but is retained in a cytoplasmic compartment. When rSK2 is present, heteromeric rSK1-rSK2 channels are also retained in the cytosolic compartment, reducing the total SK channel content on the plasma membrane. Thus, rSK1 appears to act as chaperone for rSK2 channels and expression of rSK1 may control the level of functional SK current in rat neurons.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Potenciais da Membrana/fisiologia , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
3.
J Neurophysiol ; 109(5): 1391-402, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23221411

RESUMO

N-methyl-(D)-aspartate (NMDA) receptors are heteromultimeric ion channels that contain an essential GluN1 subunit and two or more GluN2 (GluN2A-GluN2D) subunits. The biophysical properties and physiological roles of synaptic NMDA receptors are dependent on their subunit composition. In the basolateral amygdala (BLA), it has been suggested that the plasticity that underlies fear learning requires activation of heterodimeric receptors composed of GluN1/GluN2B subunits. In this study, we investigated the subunit composition of NMDA receptors present at synapses on principal neurons in the BLA. Purification of the synaptic fraction showed that both GluN2A and GluN2B subunits are present at synapses, and co-immunoprecipitation revealed the presence of receptors containing both GluN2A and GluN2B subunits. The kinetics of NMDA receptor-mediated synaptic currents and pharmacological blockade indicate that heterodimeric GluN1/GluN2B receptors are unlikely to be present at glutamatergic synapses on BLA principal neurons. Selective RNA interference-mediated knockdown of GluN2A subunits converted synaptic receptors to a GluN1/GluN2B phenotype, whereas knockdown of GluN2B subunits had no effect on the kinetics of the synaptically evoked NMDA current. Blockade of GluN1/GluN2B heterodimers with ifenprodil had no effect, but knockdown of GluN2B disrupted the induction of CaMKII-dependent long-term potentiation at these synapses. These results suggest that, on BLA principal neurons, GluN2B subunits are only present as GluN1/GluN2A/GluN2B heterotrimeric NMDA receptors. The GluN2B subunit has little impact on the kinetics of the receptor, but is essential for the recruitment of signaling molecules essential for synaptic plasticity.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Tonsila do Cerebelo/citologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Humanos , Potenciação de Longa Duração , Masculino , Neurônios/metabolismo , Piperidinas/farmacologia , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
4.
J Neurosci ; 28(43): 10803-13, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18945888

RESUMO

Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that beta adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of beta adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which beta adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to beta adrenoceptor-mediated potentiation of emotional memories.


Assuntos
Tonsila do Cerebelo/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Receptores Adrenérgicos beta/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica/métodos , Endocitose/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Técnicas de Cultura de Órgãos/métodos , Técnicas de Patch-Clamp/métodos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Transfecção
5.
Methods Enzymol ; 392: 405-19, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15644195

RESUMO

We describe two complementary strategies for preparing DNA-directed RNA interference (ddRNAi) constructs designed to express hpRNA. The first, oligonucleotide assembly (OA), uses a very simple annealing protocol to combine up to 20 short nucleotides. These are then cloned into appropriately designed restriction sites in expression vectors. OA can be used to prepare simple hairpin (hp)-expressing constructs, but we prefer to use the approach to generate longer constructs. The second strategy, long-range cloning (LRC), uses a novel adaptation of long-range PCR protocols. For LRC, entire vectors are amplified with primers that serve to introduce short sequences into plasmids at defined anchor sites during PCR. The LCR strategy has proven highly reliable in our hands for generating simple ddRNAi constructs. Moreover, LCR is likely to prove useful in many situations in which conventional cloning strategies might prove problematic. In combination, OA and LRC can greatly simplify the design and generation of many expression constructs, including constructs for ddRNAi.


Assuntos
DNA/química , Interferência de RNA , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Ágar
6.
J Virol ; 76(21): 10766-75, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12368319

RESUMO

We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NS1, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia , Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Códon , Cricetinae , Genes Virais , Teste de Complementação Genética , RNA Helicases , RNA Viral/biossíntese , Replicon , Serina Endopeptidases , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA