Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 198(3): 515-522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582835

RESUMO

Measurement of minimal residual disease (MRD) by next-generation flow cytometry (NGF) is an important tool to define deep responses in multiple myeloma (MM). However, little is known about the value of combining NGF with functional imaging and its role for MRD-based consolidation strategies in clinical routine. In the present study, we report our experience investigating these issues with 102 patients with newly diagnosed (n = 57) and relapsed/refractory MM (n = 45). Imaging was performed using either positron emission tomography or diffusion-weighted magnetic resonance imaging. In all, 45% of patients achieved MRD-negativity on both NGF and imaging (double-negativity), and 8% and 40% of patients were negative on either NGF or imaging respectively. Thus, in a minority of patients imaging was the only technique to detect residual disease. Imaging-positivity despite negativity on NGF was more common in heavily pretreated disease (four or more previous lines) compared to newly diagnosed MM (p < 0.01). Among the 29 patients undergoing MRD-triggered consolidation, 51% responded with MRD conversion and 21% with improved serological response. MRD-triggered consolidation led to superior progression-free survival (PFS) when compared to standard treatment (p = 0.04). In conclusion, we show that combining NGF with imaging is helpful particularly in patients with heavily pretreated MM, and that MRD-based consolidation could lead to improved PFS.


Assuntos
Citometria de Fluxo , Mieloma Múltiplo , Citometria de Fluxo/métodos , Humanos , Imageamento por Ressonância Magnética , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Neoplasia Residual/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
2.
Leukemia ; 36(3): 790-800, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34584204

RESUMO

Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4+FoxP3+ regulatory T cells (Tregs) are highly abundant amongst CD4+ T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo/imunologia , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/imunologia , Progressão da Doença , Humanos , Ativação Linfocitária , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA