Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2311422120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733741

RESUMO

Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Animais , Camundongos , Bacteroides/genética , Polissacarídeos , Bacteroides thetaiotaomicron/genética , Bioensaio , Dieta Ocidental
2.
CRISPR J ; 2: 51-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31021236

RESUMO

Bacterial-derived CRISPR-Cas9 nucleases have become a common tool in genome engineering. However, the editing efficiency by even the best-crafted Cas9 nucleases varies considerably with different genomic sites, and efforts to explore the vast natural Cas9 diversity have often met with mixed or little success. Here, we show that modification of the widely used Streptococcus pyogenes Cas9 by fusion with chromatin-modulating peptides (CMPs), derived from high mobility group proteins HMGN1 and HMGB1, histone H1, and chromatin remodeling complexes, improves its activity by up to several fold, particularly on refractory target sites. We further show that this CMP fusion strategy (termed CRISPR-chrom) is also effective in improving the activities of smaller Cas9 nucleases from Streptococcus pasteurianus and Campylobacter jejuni, as well as four newly characterized Cas9 orthologs from Bacillus smithii, Lactobacillus rhamnosus, Mycoplasma canis, and Parasutterella excrementihominis. Our findings suggest that this CRISPR-chrom strategy can be used to improve established Cas9 nucleases and facilitate exploration of novel Cas9 orthologs for genome modification.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Cromatina/genética , Endonucleases/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Humanos , Células K562 , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Streptococcus pyogenes/genética
3.
Nat Commun ; 8: 14958, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387220

RESUMO

Bacterial CRISPR-Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR-Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR-Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes/métodos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína 9 Associada à CRISPR , DNA/genética , DNA/metabolismo , Clivagem do DNA , Endonucleases/genética , Células HEK293 , Humanos , Células K562 , Modelos Genéticos
4.
Bio Protoc ; 7(15): e2432, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541154

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems function as an adaptive immune system in bacteria and archaea for defense against invading viruses and plasmids (Barrangou and Marraffini, 2014). The effector nucleases from some class 2 CRISPR-Cas systems have been repurposed for heterologous targeting in eukaryotic cells ( Jinek et al., 2012 ; Cong et al., 2013 ; Mali et al., 2013 ; Zetsche et al., 2015 ). However, the genomic environments of eukaryotes are distinctively different from that of prokaryotes in which CRISPR-Cas systems have evolved. Mammalian heterochromatin was found to be a barrier to target DNA access by Streptococcus pyogenes Cas9 (SpCas9), and nucleosomes, the basic units of the chromatin, were also found to impede target DNA access and cleavage by SpCas9 in vitro ( Knight et al., 2015 ; Hinz et al., 2015 ; Horlbeck et al., 2016 ; Isaac et al., 2016 ). Moreover, many CRISPR-Cas systems characterized to date often exhibit inactivity in mammalian cells and are thus precluded from gene editing applications even though they are active in bacteria or on purified DNA substrates. Thus, there is a need to devise a means to alleviate chromatin inhibition to increase gene editing efficiency, especially on difficult-to-access genomic sites, and to enable use of otherwise inactive CRISPR-Cas nucleases for gene editing need. Here we describe a proxy-CRISPR protocol for restoring nuclease activity of various class 2 CRISPR-Cas nucleases on otherwise inaccessible genomic sites in human cells via proximal targeting of a catalytically dead Cas9 ( Chen et al., 2017 ). This protocol is exemplified here by using Campylobacter jejuni Cas9 (CjCas9) as nuclease and catalytically dead SpCas9 (SpdCas9) as proximal DNA binding protein to enable CjCas9 to cleave the target for gene editing using single stranded DNA oligo templates.

5.
BMC Plant Biol ; 13: 169, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24164720

RESUMO

BACKGROUND: Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. RESULTS: We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. CONCLUSIONS: These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Genes de Plantas/genética , Tolerância ao Sal/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Bacteriano/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Metabolômica , Família Multigênica , Mutagênese Insercional/genética , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA