Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 236: 123971, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898467

RESUMO

In recent decades, research into biomaterials such as silk or cellulose has rapidly expanded due to their abundance, low cost, and tunable morphological as well as physicochemical properties. Cellulose is appealing due to its crystalline and amorphous polymorphs while silk is attractive due to its tunable secondary structure formations which is made up of flexible protein fibers. When these two biomacromolecules are mixed, their properties can be modified by changing their material composition and fabrication methodology, e.g., solvent type, coagulation agent, and temperature. Reduced graphene oxide (rGO) can be used to increase molecular interactions and stabilization of natural polymers. In this study, we sought to determine how small amounts of rGO affect the carbohydrate crystallinity and protein secondary structure formation as well as physicochemical properties and how they affect overall ionic conductivity of cellulose-silk composites. Properties of fabricated silk and cellulose composites with and without rGO were investigated using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, X-Ray Scattering, Differential Scanning Calorimetry, Dielectric Relaxation Spectroscopy, and Thermogravimetric Analysis. Our results show that addition of rGO influenced morphological and thermal properties of cellulose-silk biocomposites, specifically through cellulose crystallinity and silk ß-sheet content which further impacted ionic conductivity.


Assuntos
Celulose , Grafite , Celulose/química , Seda/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA