Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 266: 122436, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39298902

RESUMO

Persistent and mobile (PM) chemicals are considered detrimental for drinking water resources as they may pass through all barriers protecting these resources against pollution. However, knowledge on the occurrence of PM chemicals in the water cycle, that make their way into drinking water resources, is still limited. The effluents of six municipal wastewater treatment plants (WWTPs, n = 38), surface water of two rivers (n = 32) and bank filtrate of one site (n = 15) were analyzed for 127 suspected PM chemicals. In the rivers, median concentrations of 92 detected analytes ranged from 0.3 ng/L to 2.6 µg/L (tetrafluoroborate, BF4). Lower than average dilution from WWTP effluent to surface water of 43 PM chemicals suggests significant discharge from other sources. Many of these compounds were industrial chemicals, including cyanoguanidine, trifluoromethanesulfonic acid and BF4. River bank filtration (RBF) reduced the total concentration of 40 quantified compounds by 60 % from 19.5 µg/L in surface water to 8.4 µg/L in bank filtrate, on average. Of these, 20 compounds showed good removal (> 80 %), 14 intermediate (80 - 20 %) and 6 no removal (≤ 20 %), among them carbamazepine, hexafluorophosphate, and 2-pyrrolidone. 13 substances occurred at concentrations ≥ 0.1 µg/L in bank filtrate; for six of them toxicological data were insufficient for a health-based risk assessment. The regulatory definition of P and M chemicals, if used together with existing data on environmental half-lives (P) and Koc (M), showed little power to discriminate between chemicals well removed in RBF and those that were hardly removed. This comprehensive field study shows that RBF is a useful but incomplete barrier to retain PM chemicals from surface water. Thus, PM chemicals are, indeed, a challenge for a sustainable water supply.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38635091

RESUMO

Persistent and mobile (PM) chemicals spread in the water cycle and have been widely detected, yet information about their sources is still scarce. In this study, 67 PM chemicals were analyzed in 19 wastewater samples taken in the sewer system of the city of Leipzig, Germany, covering different industrial, clinical, and domestic discharges. A total of 37 of these analytes could be detected, with highly variable median concentrations between substances (median: 0.5-800 µg L-1) and for single substances between samples (e.g., 1,4-diazabicyclo[2.2.2]octane) by up to three orders of magnitude, with the highest single concentration exceeding 10 mg L-1 (p-cumenesulfonic acid). The emission of PM chemicals into the sewer system was classified as stemming from diffuse (14 analytes) or point sources (23 analytes), while 9 analytes fulfill both criteria. Many so-called industrial chemicals were also discharged from households (e.g., tris(2-chloroethyl) phosphate or 1H-benzotriazole). Examples for analytes showing specific sources are tetrafluoroborate (traffic-related industry and metal production and finishing), ε-caprolactam (large-scale laundry), or cyanuric acid (likely swimming pool). Furthermore, a correlation between 1-cyanoguanidine and guanylurea was observed for the traffic-related industry. This study outlines that sewer sampling can provide valuable information on the sources of PM chemicals. This knowledge is a prerequisite for their future emission control at source or substitution as an alternative to end-of-pipe treatment in municipal wastewater treatment plants.

3.
Sci Total Environ ; 886: 163921, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164071

RESUMO

Persistent and mobile (PM) substances are able to spread quickly in the water cycle and were thus identified as potentially problematic for the environment and water quality. If also toxic (PMT) or very persistent and very mobile (vPvM) their regulation under REACH as substances of very high concern is foreseen. Yet, knowledge on the effectiveness of advanced wastewater treatment in removing PM-substances from WWTP effluents is limited to few rather well-known chemicals. The occurrence and behavior of 111 suspected and known PM-substances was investigated in two wastewater treatment plants employing either powdered activated carbon (PAC, full-scale) or ozonation with subsequent sand/anthracite filtration (pilot-scale) and an additional granular activated carbon (GAC) filtration was investigated. 72 of the 111 PM-substances analyzed were detected at least once in the secondary effluent of either wastewater treatment plant, resulting in total concentrations of 104 µg/L and 40 µg/L, respectively. While PAC removed 32 % of PM-substances well, the total PM burden in the effluent was only reduced from 103 µg/L to 87 µg/L. Ozonation and the subsequent sand/anthracite filtration was able to reduce the PM burden in wastewater from 40 µg/L to 19 µg/L, showing a higher removal efficacy than PAC in this study. The additional GAC filtration further reduced the total PM-concentration to 13 µg/L. Among the investigated PM-chemicals detected were constituents of ionic liquids: The anion hexafluorophosphate was one of few chemicals that was detected in effluent concentrations >1 µg/L and could not be removed by the processes studied, showing that for some chemicals preventive actions may be required.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Areia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Filtração , Carvão Mineral , Ozônio/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA