Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 18(10): 1875-1883, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36862365

RESUMO

PURPOSE: In curriculum learning, the idea is to train on easier samples first and gradually increase the difficulty, while in self-paced learning, a pacing function defines the speed to adapt the training progress. While both methods heavily rely on the ability to score the difficulty of data samples, an optimal scoring function is still under exploration. METHODOLOGY: Distillation is a knowledge transfer approach where a teacher network guides a student network by feeding a sequence of random samples. We argue that guiding student networks with an efficient curriculum strategy can improve model generalization and robustness. For this purpose, we design an uncertainty-based paced curriculum learning in self-distillation for medical image segmentation. We fuse the prediction uncertainty and annotation boundary uncertainty to develop a novel paced-curriculum distillation (P-CD). We utilize the teacher model to obtain prediction uncertainty and spatially varying label smoothing with Gaussian kernel to generate segmentation boundary uncertainty from the annotation. We also investigate the robustness of our method by applying various types and severity of image perturbation and corruption. RESULTS: The proposed technique is validated on two medical datasets of breast ultrasound image segmentation and robot-assisted surgical scene segmentation and achieved significantly better performance in terms of segmentation and robustness. CONCLUSION: P-CD improves the performance and obtains better generalization and robustness over the dataset shift. While curriculum learning requires extensive tuning of hyper-parameters for pacing function, the level of performance improvement suppresses this limitation.


Assuntos
Currículo , Destilação , Humanos , Incerteza , Aprendizagem , Algoritmos , Processamento de Imagem Assistida por Computador
2.
Int J Comput Assist Radiol Surg ; 18(5): 921-928, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36648701

RESUMO

PURPOSE: Surgery scene understanding with tool-tissue interaction recognition and automatic report generation can play an important role in intra-operative guidance, decision-making and postoperative analysis in robotic surgery. However, domain shifts between different surgeries with inter and intra-patient variation and novel instruments' appearance degrade the performance of model prediction. Moreover, it requires output from multiple models, which can be computationally expensive and affect real-time performance. METHODOLOGY: A multi-task learning (MTL) model is proposed for surgical report generation and tool-tissue interaction prediction that deals with domain shift problems. The model forms of shared feature extractor, mesh-transformer branch for captioning and graph attention branch for tool-tissue interaction prediction. The shared feature extractor employs class incremental contrastive learning to tackle intensity shift and novel class appearance in the target domain. We design Laplacian of Gaussian-based curriculum learning into both shared and task-specific branches to enhance model learning. We incorporate a task-aware asynchronous MTL optimization technique to fine-tune the shared weights and converge both tasks optimally. RESULTS: The proposed MTL model trained using task-aware optimization and fine-tuning techniques reported a balanced performance (BLEU score of 0.4049 for scene captioning and accuracy of 0.3508 for interaction detection) for both tasks on the target domain and performed on-par with single-task models in domain adaptation. CONCLUSION: The proposed multi-task model was able to adapt to domain shifts, incorporate novel instruments in the target domain, and perform tool-tissue interaction detection and report generation on par with single-task models.


Assuntos
Aprendizagem , Procedimentos Cirúrgicos Robóticos , Humanos , Currículo , Distribuição Normal , Período Pós-Operatório
3.
Biomimetics (Basel) ; 7(2)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35735584

RESUMO

Surgical scene understanding is a key barrier for situation-aware robotic surgeries and the associated surgical training. With the presence of domain shifts and the inclusion of new instruments and tissues, learning domain generalization (DG) plays a pivotal role in expanding instrument-tissue interaction detection to new domains in robotic surgery. Mimicking the ability of humans to incrementally learn new skills without forgetting their old skills in a similar domain, we employ incremental DG on scene graphs to predict instrument-tissue interaction during robot-assisted surgery. To achieve incremental DG, incorporate incremental learning (IL) to accommodate new instruments and knowledge-distillation-based student-teacher learning to tackle domain shifts in the new domain. Additionally, we designed an enhanced curriculum by smoothing (E-CBS) based on Laplacian of Gaussian (LoG) and Gaussian kernels, and integrated it with the feature extraction network (FEN) and graph network to improve the instrument-tissue interaction performance. Furthermore, the FEN's and graph network's logits are normalized by temperature normalization (T-Norm), and its effect in model calibration was studied. Quantitative and qualitative analysis proved that our incrementally-domain generalized interaction detection model was able to adapt to the target domain (transoral robotic surgery) while retaining its performance in the source domain (nephrectomy surgery). Additionally, the graph model enhanced by E-CBS and T-Norm outperformed other state-of-the-art models, and the incremental DG technique performed better than the naive domain adaption and DG technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA