Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0308698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133743

RESUMO

We use community phylogenetics to elucidate the community assembly mechanisms for Geometridae moths (Lepidoptera) collected along a complete rainforest elevational gradient (200-3700 m a.s.l) on Mount Wilhelm in Papua New Guinea. A constrained phylogeny based on COI barcodes for 604 species was used to analyse 1390 species x elevation occurrences at eight elevational sites separated by 500 m elevation increments. We obtained Nearest Relatedness Index (NRI), Nearest Taxon Index (NTI) and Standardised Effect Size of Faith's Phylogenetic Diversity (SES.PD) and regressed these on temperature, plant species richness and predator abundance as key abiotic and biotic predictors. We also quantified beta diversity in the moth communities between elevations using the Phylogenetic Sorensen index. Overall, geometrid communities exhibited phylogenetic clustering, suggesting environmental filters, particularly at higher elevations at and above 2200 m a.s.l and no evidence of overdispersion. NRI, NTI and SES.PD showed no consistent trends with elevation or the studied biotic and abiotic variables. Change in community structure was driven by turnover of phylogenetic beta-diversity, except for the highest 2700-3200 m elevations, which were characterised by nested subsets of lower elevation communities. Overall, the elevational signal of geometrid phylogeny was weak-moderate. Additional insect community phylogeny studies are needed to understand this pattern.


Assuntos
Altitude , Biodiversidade , Mariposas , Filogenia , Floresta Úmida , Animais , Papua Nova Guiné , Mariposas/genética , Mariposas/fisiologia , Mariposas/classificação
3.
Oecologia ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829402

RESUMO

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

4.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395938

RESUMO

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Assuntos
Dipterocarpaceae , Genômica , Floresta Úmida , Genoma , Filogenia
5.
Ecol Evol ; 14(2): e10973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343568

RESUMO

Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.

6.
Ecol Evol ; 14(2): e10985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384823

RESUMO

Species richness has been shown to decrease, and elevational range increase (the Rapoport effect), with elevation as a consequence of biotic and abiotic factors, but patterns are inconsistent across taxonomic groups. Despite being an important indicator taxon and a component of local communities, Orthoptera distributions at higher elevations in Europe remain unclear. We investigated the relationship of Orthoptera species richness and elevational range with elevation in the Pyrenees mountains, Europe. We conducted sweepnetting surveys supplemented by hand-sampling, at 28 sites stratified by elevation, across three study areas. Using generalised linear models, we found that species richness declined with elevation. Elevation was an important predictor of species richness, but sampling effort and vegetation structure (height and cover) also contributed to estimates of species richness. Using a nonlinear regression to model the elevational range of species over the elevational gradient, we did not observe a Rapoport effect, with elevational range peaking at mid-elevation instead. Smaller elevational ranges of species found at high elevations may be due to a combination of sampling over a restricted elevational range and the presence of specialist high-elevation species. We argue that our findings are useful for understanding species distributions with elevation at the interface between local and regional scales. Clarifying the biotic and abiotic predictors of species distribution is important for informing conservation efforts and predicting consequences of climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA