Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 19(6): 20230119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37282492

RESUMO

Kelp gulls (Larus dominicanus) commonly feed on the skin and blubber of surfacing southern right whales (SRW, Eubalaena australis) in the near shore waters of Península Valdés (PV), Argentina. Mothers and especially calves respond to gull attacks by changing their swimming speeds, resting postures and overall behaviour. Gull-inflicted wounds per calf have increased markedly since the mid-1990s. Unusually high mortality of young calves occurred locally after 2003, and increasing evidence points to gull harassment as a factor contributing to the excess deaths. After leaving PV, calves undertake a long migration with their mothers to summer feeding areas; their health during this strenuous exertion is likely to affect their probabilities of first-year survival. To explore the effects of gull-inflicted wounds on calf survival, we analysed 44 capture-recapture observations between 1974 and 2017, for 597 whales photo-identified in their years of birth between 1974 and 2011. We found a marked decrease in first-year survival associated with an increase in wound severity over time. Our analysis supports recent studies indicating that gull harassment at PV may impact SRW population dynamics.


Assuntos
Charadriiformes , Kelp , Animais , Baleias , Argentina
2.
Sci Adv ; 7(42): eabh2823, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652948

RESUMO

Whales contribute to marine ecosystem functioning, and they may play a role in mitigating climate change and supporting the Antarctic krill (Euphausia superba) population, a keystone prey species that sustains the entire Southern Ocean (SO) ecosystem. By analyzing a five-decade (1971­2017) data series of individual southern right whales (SRWs; Eubalaena australis) photo-identified at Península Valdés, Argentina, we found a marked increase in whale mortality rates following El Niño events. By modeling how the population responds to changes in the frequency and intensity of El Niño events, we found that such events are likely to impede SRW population recovery and could even cause population decline. Such outcomes have the potential to disrupt food-web interactions in the SO, weakening that ecosystem's contribution to the mitigation of climate change at a global scale.

3.
J Hered ; 111(3): 263-276, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32347944

RESUMO

As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.


Assuntos
Variação Genética , Baleias/genética , Distribuição Animal , Migração Animal , Animais , Brasil , Chile , Comportamento Alimentar , Feminino , Técnicas de Genotipagem , Ilhas , Masculino , Peru
4.
Am J Bot ; 106(12): 1602-1611, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31808153

RESUMO

PREMISE: Conversion of primary forests to pastures is a major cause of habitat fragmentation in the tropics. Fragmentation is expected to impede gene flow for many plant species that are restricted to remaining forest fragments. Epiphytes may be especially vulnerable to this effect of forest fragmentation because they depend on host trees. However, trees that remain in pastures may enhance connectivity across the landscape for epiphyte species that can thrive on such trees. To investigate this possibility, we studied the genetic structures of two such species on isolated pasture trees and surrounding forest, in relation to their local abundances in different habitat types and aspects of their reproductive biology including pollen and seed dispersal agents, and looked for evidence of increased or diminished gene flow. METHODS: We used microsatellite markers to assess geographic patterns of genetic diversity and differentiation in two epiphytic bromeliads, Catopsis nitida and Werauhia tonduziana, in the Monteverde region of Costa Rica. RESULTS: About 85% of the FST value for Catopsis nitida was found among pastures within regions, while for Weruahia tonduziana, about 80% of the FST value was contributed by differences between regions, indicating much more gene flow within regions, relative to C. nitida. CONCLUSIONS: Although there was substantial genetic differentiation among epiphyte populations, those on isolated pasture trees were not substantially less diverse than those in adjacent forests, suggesting that pasture trees may serve as "stepping stones" that help these species maintain their genetic connectedness and diversity at larger geographic scales.


Assuntos
Árvores , Clima Tropical , Costa Rica , Ecossistema , Florestas
5.
PLoS One ; 12(2): e0171449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28170433

RESUMO

Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively.


Assuntos
Fenótipo , Baleias/anatomia & histologia , Animais , Contagem de Células , Feminino , Masculino , Melanócitos/citologia , Pele/citologia , Pele/ultraestrutura
6.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100614

RESUMO

Rhinoviruses are the most common causes of the common cold. Their many distinct lineages fall into "major" and "minor" groups that use different cell surface receptors to enter host cells. Minor-group rhinoviruses are more immunogenic in laboratory studies, although their patterns of transmission and their cold symptoms are broadly similar to those of the major group. Here we present evolutionary evidence that minor-group viruses are also more immunogenic in humans. A key finding is that rates of amino acid substitutions at exposed sites in the capsid proteins VP2, VP3, and VP1 tend to be elevated in minor-group relative to major-group viruses, while rates at buried sites show no consistent differences. A reanalysis of historical virus watch data also indicates a higher immunogenicity of minor-group viruses, consistent with our findings about evolutionary rates at amino acid positions most directly exposed to immune surveillance. The increased immunogenicity and speed of evolution in minor-group lineages may contribute to the very large numbers of rhinovirus serotypes that coexist while differing in virulence.IMPORTANCE Most colds are caused by rhinoviruses (RVs). Those caused by a subset known as the minor-group members of rhinovirus species A (RV-A) are correlated with the inception and aggravation of asthma in at-risk populations. Genetically, minor-group viruses are similar to major-group RV-A, from which they were derived, although they tend to elicit stronger immune responses. Differences in their rates and patterns of molecular evolution should be highly relevant to their epidemiology. All RV-A strains show high rates of amino acid substitutions in the capsid proteins at exposed sites not previously identified as being immunogenic, and this increase is significantly greater in minor-group viruses. These findings will inform future studies of the recently discovered RV-C, which also appears to exacerbate asthma in adults and children. In addition, these findings draw attention to the difficult problem of explaining the long-term coexistence of many serotypes of major- and minor-group RVs.


Assuntos
Resfriado Comum/virologia , Evolução Molecular , Rhinovirus/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Resfriado Comum/imunologia , Humanos , Filogenia , Rhinovirus/imunologia , Análise de Sequência de DNA , Proteínas Virais/genética , Proteínas Virais/imunologia , Internalização do Vírus
7.
Mol Biol Evol ; 33(11): 2924-2934, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524826

RESUMO

A specialized insulin was recently found in the venom of a fish-hunting cone snail, Conus geographus Here we show that many worm-hunting and snail-hunting cones also express venom insulins, and that this novel gene family has diversified explosively. Cone snails express a highly conserved insulin in their nerve ring; presumably this conventional signaling insulin is finely tuned to the Conus insulin receptor, which also evolves very slowly. By contrast, the venom insulins diverge rapidly, apparently in response to biotic interactions with prey and also possibly the cones' own predators and competitors. Thus, the inwardly directed signaling insulins appear to experience predominantly purifying sele\ction to target an internal receptor that seldom changes, while the outwardly directed venom insulins frequently experience directional selection to target heterospecific insulin receptors in a changing mix of prey, predators and competitors. Prey insulin receptors may often be constrained in ways that prevent their evolutionary escape from targeted venom insulins, if amino-acid substitutions that result in escape also degrade the receptor's signaling functions.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Insulina/biossíntese , Sequência de Aminoácidos , Animais , Teorema de Bayes , Conotoxinas/biossíntese , Conotoxinas/toxicidade , Caramujo Conus/metabolismo , Evolução Molecular , Variação Genética , Insulina/genética , Dados de Sequência Molecular , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Peçonhas/biossíntese , Peçonhas/genética
10.
PLoS One ; 10(10): e0139291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488493

RESUMO

At least 626 southern right whale (Eubalaena australis) calves died at the Península Valdés calving ground, Argentina, between 2003 and 2014. Intense gull harassment may have contributed to these deaths. In the 1970s, Kelp Gulls (Larus dominicanus) began feeding on skin and blubber pecked from the backs of living right whales at Valdés. The frequency of gull attacks has increased dramatically over the last three decades and mother-calf pairs are the primary targets. Pairs attacked by gulls spend less time nursing, resting and playing than pairs not under attack. In successive attacks, gulls open new lesions on the whales' backs or enlarge preexisting ones. Increased wounding could potentially lead to dehydration, impaired thermoregulation, and energy loss to wound healing. The presence, number and total area of gull-inflicted lesions were assessed using aerial survey photographs of living mother-calf pairs in 1974-2011 (n = 2680) and stranding photographs of dead calves (n = 192) in 2003-2011. The percentage of living mothers and calves with gull lesions increased from an average of 2% in the 1970s to 99% in the 2000s. In the 1980s and 1990s, mothers and calves had roughly equal numbers of lesions (one to five), but by the 2000s, calves had more lesions (nine or more) covering a greater area of their backs compared to their mothers. Living mother-calf pairs and dead calves in Golfo Nuevo had more lesions than those in Golfo San José in the 2000s. The number and area of lesions increased with calf age during the calving season. Intensified Kelp Gull harassment at Península Valdés could be compromising calf health and thereby contributing to the high average rate of calf mortality observed in recent years, but it cannot explain the large year-to-year variance in calf deaths since 2000.


Assuntos
Agressão , Charadriiformes , Comportamento Alimentar/fisiologia , Estresse Fisiológico/fisiologia , Baleias/lesões , Animais , Argentina , Feminino , Masculino
11.
Brain Behav Evol ; 86(1): 58-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26397110

RESUMO

The venomous fish-hunting cone snails (Conus) comprise eight distinct lineages evolved from ancestors that preyed on worms. In this article, we attempt to reconstruct events resulting in this shift in food resource by closely examining patterns of behavior, biochemical agents (toxins) that facilitate prey capture and the combinations of toxins present in extant species. The first sections introduce three different hunting behaviors associated with piscivory: 'taser-and-tether', 'net-engulfment' and 'strike-and-stalk'. The first two fish-hunting behaviors are clearly associated with distinct groups of venom components, called cabals, which act in concert to modify the behavior of prey in a specific manner. Derived fish-hunting behavior clearly also correlates with physical features of the radular tooth, the device that injects these biochemical components. Mapping behavior, biochemical components and radular tooth features onto phylogenetic trees shows that fish-hunting behavior emerged at least twice during evolution. The system presented here may be one of the best examples where diversity in structure, physiology and molecular features were initially driven by particular pathways selected through behavior.


Assuntos
Evolução Biológica , Caramujo Conus/fisiologia , Neurobiologia , Comportamento Predatório/fisiologia , Animais
12.
Proc Natl Acad Sci U S A ; 111(17): 6359-64, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733936

RESUMO

Many insects rely on symbiotic microbes for survival, growth, or reproduction. Over evolutionary timescales, the association with intracellular symbionts is stabilized by partner fidelity through strictly vertical symbiont transmission, resulting in congruent host and symbiont phylogenies. However, little is known about how symbioses with extracellular symbionts, representing the majority of insect-associated microorganisms, evolve and remain stable despite opportunities for horizontal exchange and de novo acquisition of symbionts from the environment. Here we demonstrate that host control over symbiont transmission (partner choice) reinforces partner fidelity between solitary wasps and antibiotic-producing bacteria and thereby stabilizes this Cretaceous-age defensive mutualism. Phylogenetic analyses show that three genera of beewolf wasps (Philanthus, Trachypus, and Philanthinus) cultivate a distinct clade of Streptomyces bacteria for protection against pathogenic fungi. The symbionts were acquired from a soil-dwelling ancestor at least 68 million years ago, and vertical transmission via the brood cell and the cocoon surface resulted in host-symbiont codiversification. However, the external mode of transmission also provides opportunities for horizontal transfer, and beewolf species have indeed exchanged symbiont strains, possibly through predation or nest reuse. Experimental infection with nonnative bacteria reveals that--despite successful colonization of the antennal gland reservoirs--transmission to the cocoon is selectively blocked. Thus, partner choice can play an important role even in predominantly vertically transmitted symbioses by stabilizing the cooperative association over evolutionary timescales.


Assuntos
Evolução Biológica , Streptomyces/fisiologia , Simbiose/fisiologia , Vespas/microbiologia , Animais , Feminino , Filogenia , Fatores de Tempo
13.
Commun Integr Biol ; 7(6): e993265, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479018

RESUMO

Mutualistic microorganisms play important roles in nutrition, reproduction and defense of many insects, yet the factors contributing to their maintenance and dispersal remain unknown in most cases. Theory suggests that collaboration can be maintained by repeated interaction of the same partners (partner fidelity) or by selective discrimination against non-cooperative partners (partner choice). In the defensive mutualism between solitary beewolf wasps and their antibiotic-producing Streptomyces bacteria, partner choice by host control of vertical symbiont transmission reinforces partner fidelity and has helped to maintain this highly specific association since it originated in the late Cretaceous. However, co-phylogenetic and biogeographic analyses suggest that there has also been considerable horizontal transmission of the symbionts. While the beewolves clearly have a paleotropic or palearctic origin, with later colonization of the nearctic and neotropics via Beringia and the Aves ridge, respectively, the bacteria show only weak geographical clustering, implying global dispersal or vicariance within the confines of an otherwise apparently exclusive symbiotic relationship. We discuss several hypotheses that may explain these patterns. Future studies investigating the occurrence of beewolf symbionts in the environment could yield broadly applicable insights into the relative impact of animal-vectored and free-living dispersal on the distribution of microorganisms in nature.

14.
Mol Phylogenet Evol ; 65(1): 335-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750110

RESUMO

The traditional taxonomy of ca. 700 cone snails assigns all species to a single genus, Conus Linnaeus 1758. However, an increasing body of evidence suggests that some belong to a phylogenetically distinct clade that is sometimes referred to as Conasprella. Previous work (Kraus et al., 2011) showed that a short (259 bp) conserved intronic sequence (CIS) of the γ-glutamyl carboxylase gene (intron 9) can be used to delineate deep phylogenetic relationships among some groups of Conus. The work described here uses intron 9 (338 bp) to resolve problematic relationships among the conasprellans and to distinguish them from Conus proper. Synapomorphic mutations at just 39 sites can resolve several groups within Conasprella because the informative region of intron 9 is so well conserved that the phylogenetic signal is not obscured by homoplasies at conflicting sites. Intron 9 also unambiguously distinguishes Conasprella as a whole from Conus because the conserved regions that are so well conserved within each group are not alignable and clearly not homologous between them. This pattern suggests that expression of the γ-glutamyl carboxylase gene may have undergone a functionally significant change in Conus or Conasprella shortly after they diverged.


Assuntos
Carbono-Carbono Ligases/genética , Sequência Conservada/genética , Caramujo Conus/classificação , Filogenia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Caramujo Conus/genética , Íntrons , Dados de Sequência Molecular
15.
PLoS One ; 7(3): e32826, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412929

RESUMO

Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes.


Assuntos
Evolução Molecular , Genoma de Inseto , Genoma Mitocondrial , Himenópteros/genética , Sequência Rica em At , Animais , Composição de Bases , Ordem dos Genes , Himenópteros/classificação , Taxa de Mutação , Fases de Leitura Aberta , Filogenia , RNA Ribossômico , RNA de Transferência , Vespas/genética
16.
Mol Phylogenet Evol ; 58(2): 383-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147238

RESUMO

A short (259 nucleotide) conserved intronic sequence (CIS) is surprisingly informative for delineating deep phylogenetic relationships in cone snails. Conus species previously have been assigned to clades based on the evidence from mitochondrial 12S and 16S rRNA gene sequences (1129 bp). Despite their length, these genes lack the phylogenetic information necessary to resolve the relationships among the clades. Here we show that the relationships can be inferred from just 46 sites in the very short CIS sequence (a portion of "intron 9" of the γ-glutamyl carboxylase gene). This is counterintuitive because in short sequences sampling error (noise) often drowns out phylogenetic signal. The intron 9 CIS is rich in synapomorphies that define the divergence patterns among eight clades of worm- and fish-hunting Conus, and it contains almost no homoplasy. Parsimony, maximum likelihood and Bayesian analyses of the combined sequences (mt rRNA+CIS) confirm most of the relationships among 23 Conus sequences. This phylogeny implies that fish-hunting behavior evolved at least twice during the history of Conus-once among New World species and independently in the Indo-Pacific clades.


Assuntos
Caramujo Conus/genética , Íntrons , Filogenia , Animais , Teorema de Bayes , Evolução Biológica , Sequência Conservada , Caramujo Conus/classificação , DNA Mitocondrial/genética , Funções Verossimilhança , RNA Ribossômico/genética , RNA Ribossômico 16S/genética
17.
RNA ; 16(10): 2014-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20719917

RESUMO

Alternative gene splicing is pervasive in metazoa, particularly in humans, where the majority of genes generate splice variant transcripts. Characterizing the biological significance of alternative transcripts is methodologically difficult since it is impractical to assess thousands of splice variants as to whether they actually encode proteins, whether these proteins are functional, or whether transcripts have a function independent of protein synthesis. Consequently, to elucidate the functional significance of splice variants and to investigate mechanisms underlying the fidelity of mRNA splicing, we used an indirect approach based on analyzing the evolutionary conservation of splice variants among species. Using DNA polymerase ß as an indicator locus, we cloned and characterized the types and frequencies of transcripts generated in primary cell lines of five primate species. Overall, we found that in addition to the canonical DNA polymerase ß transcript, there were 25 alternative transcripts generated, most containing premature terminating codons. We used a statistical method borrowed from community ecology to show that there is significant diversity and little conservation in alternative splicing patterns among species, despite high sequence similarity in the underlying genomic (exonic) sequences. However, the frequency of alternative splicing at this locus correlates well with life history parameters such as the maximal longevity of each species, indicating that the alternative splicing of unproductive splice variants may have adaptive significance, even if the specific RNA transcripts themselves have no function. These results demonstrate the validity of the phylogenetic conservation approach in elucidating the biological significance of alternative splicing.


Assuntos
Processamento Alternativo , Primatas/genética , Adaptação Fisiológica , Animais , Sequência de Bases , Linhagem Celular , Códon sem Sentido/genética , DNA Polimerase beta/genética , Primers do DNA/genética , Feminino , Gorilla gorilla/genética , Humanos , Longevidade/genética , Macaca fascicularis/genética , Masculino , Dados de Sequência Molecular , Pan troglodytes/genética , Filogenia , Pongo pygmaeus/genética , Primatas/fisiologia , Isoformas de Proteínas/genética , Especificidade da Espécie
18.
Mol Biol Evol ; 27(5): 1162-72, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20097659

RESUMO

Coalescent theory provides an elegant and powerful method for understanding the shape of gene genealogies and resulting patterns of genetic diversity. However, the coalescent does not naturally accommodate the effects of heritable variation in fitness. Although some methods are available for studying the effects of strong selection (Ns >> 1), few tools beyond forward simulation are available for quantifying the impact of weak selection at many sites. Here, we introduce a continuous-state coalescent capable of accurately describing the distortions to genealogies caused by moderate to weak natural selection affecting many linked sites. We calculate approximately the full distribution of pairwise coalescent times, the lengths of coalescent intervals, and the time to the most recent common ancestor of a sample. Weak selection (Ns approximately 1) is found to substantially decrease the tree depth, primarily through a shortening of the lengths of the basal coalescent intervals. Additionally, we demonstrate that only two parameters, population size and the variance of the distribution describing fitness heritability, are sufficient to describe most changes.


Assuntos
Biologia Computacional/métodos , Genes/genética , Filogenia , Seleção Genética , Simulação por Computador , Padrões de Herança/genética , Modelos Genéticos , Fatores de Tempo
19.
Genetics ; 184(2): 529-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19966069

RESUMO

Neutral nucleotide diversity does not scale with population size as expected, and this "paradox of variation" is especially severe for animal mitochondria. Adaptive selective sweeps are often proposed as a major cause, but a plausible alternative is selection against large numbers of weakly deleterious mutations subject to Hill-Robertson interference. The mitochondrial genealogies of several species of whale lice (Amphipoda: Cyamus) are consistently too short relative to neutral-theory expectations, and they are also distorted in shape (branch-length proportions) and topology (relative sister-clade sizes). This pattern is not easily explained by adaptive sweeps or demographic history, but it can be reproduced in models of interference among forward and back mutations at large numbers of sites on a nonrecombining chromosome. A coalescent simulation algorithm was used to study this model over a wide range of parameter values. The genealogical distortions are all maximized when the selection coefficients are of critical intermediate sizes, such that Muller's ratchet begins to turn. In this regime, linked neutral nucleotide diversity becomes nearly insensitive to N. Mutations of this size dominate the dynamics even if there are also large numbers of more strongly and more weakly selected sites in the genome. A genealogical perspective on Hill-Robertson interference leads directly to a generalized background-selection model in which the effective population size is progressively reduced going back in time from the present.


Assuntos
Meio Ambiente , Genes/genética , Padrões de Herança/genética , Modelos Genéticos , Mutação , Algoritmos , Animais , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Genes de Insetos/genética , Masculino , Ftirápteros/genética , Ftirápteros/fisiologia , Densidade Demográfica , Seleção Genética , Baleias/parasitologia
20.
Mol Ecol ; 18(5): 782-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19207250

RESUMO

Ocean warming will undoubtedly affect the migratory patterns of many marine species, but specific changes can be predicted only where behavioural mechanisms guiding migration are understood. Southern right whales show maternally inherited site fidelity to near-shore winter nursery grounds, but exactly where they feed in summer (collectively and individually) remains mysterious. They consume huge quantities of copepods and krill, and their reproductive rates respond to fluctuations in krill abundance linked to El Niño Southern Oscillation (ENSO). Here we show that genetic and isotopic signatures, analysed together, indicate maternally directed site fidelity to diverse summer feeding grounds for female right whales calving at Península Valdés, Argentina. Isotopic values from 131 skin samples span a broad range (-23.1 to -17.2‰ δ¹³C, 6.0 to 13.8‰ δ¹5N) and are more similar than expected among individuals sharing the same mitochondrial haplotype. This pattern indicates that calves learn summer feeding locations from their mothers, and that the timescale of culturally inherited site fidelity to feeding grounds is at least several generations. Such conservatism would be expected to limit the exploration of new feeding opportunities, and may explain why this population shows increased rates of reproductive failure in years following elevated sea-surface temperature anomalies off South Georgia, the richest known feeding ground for baleen whales in the South Atlantic.


Assuntos
Comportamento Alimentar , Padrões de Herança/genética , Marcação por Isótopo/métodos , Baleias/genética , Animais , Argentina , Sequência de Bases , Isótopos de Carbono , DNA Mitocondrial/genética , Feminino , Variação Genética , Haplótipos/genética , Isótopos de Nitrogênio , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA