Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 92(4): 371-380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844681

RESUMO

Genome size variation in eukaryotes has myriad effects on organismal biology from the genomic to whole-organism level. Large genome size may be associated with lower selection efficiency because lower effective population sizes allow fixation of deleterious mutations via genetic drift, increasing genome size and decreasing selection efficiency. Because of a hypothesized negative relationship between genome size and recombination rate per base pair, increased genome size could also increase the effect of linked selection in the genome, decreasing the efficiency with which natural selection can fix or remove mutations. We used a transcriptomic dataset of 15 and a subset of six Neotropical salamander species ranging in genome size from 12 to 87 pg to study the relationship between genome size and efficiency of selection. We estimated dN/dS of salamanders with small and large genomes and tested for relaxation of selection in the larger genomes. Contrary to our expectations, we did not find a significant relationship between genome size and selection efficiency or strong evidence for higher dN/dS values in species with larger genomes for either species set. We also found little evidence for relaxation of selection in species with larger genomes. A positive correlation between genome size and range size (a proxy of population size) in this group disagrees with predictions of stronger drift in species with larger genomes. Our results highlight the complex interactions between the many forces shaping genomic variation in organisms with genomic gigantism.


Assuntos
Tamanho do Genoma , Seleção Genética , Urodelos , Animais , Urodelos/genética , Deriva Genética , Densidade Demográfica , Genoma/genética , Genômica/métodos
2.
Ecol Evol ; 13(11): e10707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020701

RESUMO

Genetic diversity is the raw material of evolution, yet the reasons why it varies among species remain poorly understood. While studies at deeper phylogenetic scales point to the influence of life history traits on genetic diversity, it appears to be more affected by population size but less predictable at shallower scales. We used proxies for population size, mutation rate, direct selection, and linked selection to test factors affecting genetic diversity within a diverse assemblage of Neotropical salamanders, which vary widely for these traits. We estimated genetic diversity of noncoding loci using ddRADseq and coding loci using RNAseq for an assemblage of Neotropical salamanders distributed from northern Mexico to Costa Rica. Using ddRADseq loci, we found no significant association with genetic diversity, while for RNAseq data we found that environmental heterogeneity and proxies of population size predict a substantial portion of the variance in genetic diversity across species. Our results indicate that diversity of coding loci may be more predictable than that of noncoding loci, which appears to be mostly unpredictable at shallower phylogenetic scales. Our results suggest that coding loci may be more appropriate for genetic diversity estimates used in conservation planning because of the lack of any association between the variables we used and genetic diversity of noncoding loci.

3.
Microb Ecol ; 86(1): 670-686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35705744

RESUMO

Host microbial communities are increasingly seen as an important component of host health. In amphibians, the first land vertebrates that are threatened by a fungal skin disease globally, our understanding of the factors influencing the microbiome of amphibian skin remains incomplete because recent studies have focused almost exclusively on bacteria, and little information exists on fungal communities associated with wild amphibian species. In this study, we describe the effects of host phylogeny, climate, geographic distance, and infection with a fungal pathogen on the composition and structure of bacterial and fungal communities in seven tropical salamander species that occur in the Trans-Mexican Volcanic Belt of Central Mexico. We find that host phylogenetic relatedness is correlated with bacterial community composition while a composite climatic variable of temperature seasonality and precipitation is significantly associated with fungal community composition. We also estimated co-occurrence networks for bacterial and fungal taxa and found differences in the degree of connectivity and the distribution of negative associations between the two networks. Our results suggest that different factors may be responsible for structuring the bacterial and fungal communities of amphibian skin and that the inclusion of fungi in future studies could shed light on important functional interactions within the microbiome.


Assuntos
Micobioma , Urodelos , Animais , Urodelos/microbiologia , México , Filogenia , Anfíbios/microbiologia , Bactérias/genética , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA