Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507464

RESUMO

BACKGROUND: Glioblastoma (GBM) commonly displays epidermal growth factor receptor (EGFR) alterations (mainly amplification and EGFRvIII) and TAT-Cx43266-283 is a Src-inhibitory peptide with antitumor properties in preclinical GBM models. Given the link between EGFR and Src, the aim of this study was to explore the role of EGFR in the antitumor effects of TAT-Cx43266-283. METHODS: The effect of TAT-Cx43266-283, temozolomide (TMZ) and erlotinib (EGFR inhibitor) was studied in patient-derived GBM stem cells (GSCs) and murine neural stem cells (NSCs) with and without EGFR alterations, in vitro and in vivo. EGFR alterations were analyzed by Western blot (WB) and Fluorescence In Situ Hybridization (FISH) in these cells, and compared with Src activity and survival in GBM samples from TCGA. RESULTS: The effect of TAT-Cx43266-283 correlated with EGFR alterations in a set of patient-derived GSCs and was stronger than that exerted by TMZ and erlotinib. In fact, TAT-Cx43266-283 only affected NSCs with EGFR alterations, but not healthy NSCs. EGFR alterations correlated with Src activity and poor survival in GBM patients. Finally, tumors generated from NSCs with EGFR alterations, showed a decrease in growth, invasiveness and vascularization after treatment with TAT-Cx43266-283, which enhanced the survival of immunocompetent mice. CONCLUSION: Clinically relevant EGFR alterations are predictors of TAT-Cx43266-283 response and part of its mechanism of action, even in TMZ- and erlotinib-resistant GSCs. TAT-Cx43266-283 targets NSCs with GBM-driver mutations, including EGFR alterations, in an immunocompetent GBM model in vivo, suggesting a promising effect on GBM recurrence. Together, this study represents an important step towards the clinical application of TAT-Cx43266-283.

2.
Neuro Oncol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411438

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date the reason for this sex-specific aggressiveness remains unclear. Therefore, the aim of this study is to investigate tumor processes that explain these sex differences. METHODS: This was a retrospective study of GBM patients which was stratified according to sex. Cohort with 73 tumors were analyzed with immunohistochemistry, RNA-seq and RT-qPCR to characterize differences in vascular and immunological profiles. Transcriptomic profiling, GSEA and pathway enrichment analysis were used for discovery molecular pathways predominant in each group. We further investigated the therapeutic effect of Bevacizumab (VEGFA blocking antibody) in retrospective GBM cohort (36 tumors) based on sex differences. RESULTS: We found that under hypoxic tumor conditions, two distinct tumor immuno-angiogenic ecosystems develop linked to sex differences and ESR1 expression are generated. One of these subgroups, which includes male patients with low ESR1 expression, is characterized by vascular fragility associated with the appearance of regions of necrosis and high inflammation (called necroinflamed tumors). This male-specific tumor subtype shows high inflammation related to MDSC infiltration. Using this stratification, we identified a possible group of patients who could respond to bevacizumab (BVZ) and revealed a genetic signature that may find clinical applications as a predictor of those who may benefit most from this treatment. CONCLUSIONS: This study provides a stratification based on the sexual differences in GBM, which associates the poor prognosis with the presence of immunosuppressive myeloid cells in the necrotic areas. This new stratification could change the current prognosis of GBM and identifies those who respond to BVZ treatment.

4.
Acta Neuropathol Commun ; 11(1): 79, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165457

RESUMO

Glial-origin brain tumors, including glioblastomas (GBM), have one of the worst prognoses due to their rapid and fatal progression. From an oncological point of view, advances in complete surgical resection fail to eliminate the entire tumor and the remaining cells allow a rapid recurrence, which does not respond to traditional therapeutic treatments. Here, we have reviewed new immunotherapy strategies in association with the knowledge of the immune micro-environment. To understand the best lines for the future, we address the advances in the design of neoantigen vaccines and possible new immune modulators. Recently, the efficacy and availability of vaccine development with different formulations, especially liposome plus mRNA vaccines, has been observed. We believe that the application of new strategies used with mRNA vaccines in combination with personalized medicine (guided by different omic's strategies) could give good results in glioma therapy. In addition, a large part of the possible advances in new immunotherapy strategies focused on GBM may be key improving current therapies of immune checkpoint inhibitors (ICI), given the fact that this type of tumor has been highly refractory to ICI.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Vacinas Anticâncer/uso terapêutico , Fatores Imunológicos , Glioma/tratamento farmacológico , Imunoterapia/métodos , Neoplasias Encefálicas/patologia , Microambiente Tumoral
5.
Neurooncol Adv ; 4(1): vdac155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325374

RESUMO

Background: Temozolomide (TMZ) is an oral alkylating agent active against gliomas with a favorable toxicity profile. It is part of the standard of care in the management of glioblastoma (GBM), and is commonly used in low-grade gliomas (LGG). In-silico mathematical models can potentially be used to personalize treatments and to accelerate the discovery of optimal drug delivery schemes. Methods: Agent-based mathematical models fed with either mouse or patient data were developed for the in-silico studies. The experimental test beds used to confirm the results were: mouse glioma models obtained by retroviral expression of EGFR-wt/EGFR-vIII in primary progenitors from p16/p19 ko mice and grown in-vitro and in-vivo in orthotopic allografts, and human GBM U251 cells immobilized in alginate microfibers. The patient data used to parametrize the model were obtained from the TCGA/TCIA databases and the TOG clinical study. Results: Slow-growth "virtual" murine GBMs benefited from increasing TMZ dose separation in-silico. In line with the simulation results, improved survival, reduced toxicity, lower expression of resistance factors, and reduction of the tumor mesenchymal component were observed in experimental models subject to long-cycle treatment, particularly in slowly growing tumors. Tissue analysis after long-cycle TMZ treatments revealed epigenetically driven changes in tumor phenotype, which could explain the reduction in GBM growth speed. In-silico trials provided support for implementation methods in human patients. Conclusions: In-silico simulations, in-vitro and in-vivo studies show that TMZ administration schedules with increased time between doses may reduce toxicity, delay the appearance of resistances and lead to survival benefits mediated by changes in the tumor phenotype in slowly-growing GBMs.

6.
Neurotherapeutics ; 19(1): 408-420, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35099769

RESUMO

Glioblastomas (GBMs) are the most frequent and highly aggressive brain tumors, being resistant to all cytotoxic and molecularly targeted agents tested so far. There is, therefore, an urgent need to find novel therapeutic approaches and/or alternative targets to bring treatment options to patients. Here, we first show that GBMs express high levels of N-MYC protein, a transcription factor involved in normal brain development. A novel stapled peptide designed to specifically target N-MYC protein monomer, IDP-410, is able to impair the formation of N-MYC/MAX complex and reduce the stability of N-MYC itself. As a result, the viability of GBM cells is compromised. Moreover, the efficacy is found dependent on the levels of expression of N-MYC. Finally, we demonstrate that IDP-410 reduces GBM growth in vivo when administered systemically, both in subcutaneous and intracranial xenografts, reducing the vascularization of the tumors, highlighting a potential relationship between the function of N-MYC and the expression of mesenchymal/angiogenic genes. Overall, our results strengthen the view of N-MYC as a therapeutic target in GBM and strongly suggest that IDP-410 could be further developed to become a first-in-class inhibitor of N-MYC protein, affecting not only tumor cell proliferation and survival, but also the interplay between GBM cells and their microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Microambiente Tumoral
7.
Neuroscientist ; 28(3): 222-237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33446074

RESUMO

The brain is endowed with a unique cellular composition and organization, embedded within a vascular network and isolated from the circulating blood by a specialized frontier, the so-called blood-brain barrier (BBB), which is necessary for its proper function. Recent reports have shown that increments in the permeability of the blood vessels facilitates the entry of toxic components and immune cells to the brain parenchyma and alters the phenotype of the supporting astrocytes. All of these might contribute to the progression of different pathologies such as brain cancers or neurodegenerative diseases. Although it is well known that BBB breakdown occurs due to pericyte malfunctioning or to the lack of stability of the blood vessels, its participation in the diverse neural diseases needs further elucidation. This review summarizes what it is known about BBB structure and function and how its instability might trigger or promote neuronal degeneration and glioma progression, with a special focus on the role of pericytes as key modulators of the vasculature. Moreover, we will discuss some recent reports that highlights the participation of the BBB alterations in glioma growth. This pan-disease analysis might shed some light into these otherwise untreatable diseases and help to design better therapeutic approaches.


Assuntos
Doenças do Sistema Nervoso Central , Glioma , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Pericitos/fisiologia
8.
Cancer Res ; 81(8): 2142-2156, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593822

RESUMO

The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood-brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR. SIGNIFICANCE: This study identifies the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2142/F1.large.jpg.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Transdiferenciação Celular , Microambiente Celular , Glioma/irrigação sanguínea , Mutação , Pericitos/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Barreira Hematoencefálica/metabolismo , Medula Óssea , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromossomos Humanos X , Receptores ErbB/genética , Glioma/imunologia , Glioma/patologia , Humanos , Imunidade Celular , Isocitrato Desidrogenase/genética , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Piperidinas/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOX9 , Sunitinibe/farmacologia , Hipóxia Tumoral , Microambiente Tumoral
9.
Cancers (Basel) ; 12(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147752

RESUMO

BACKGROUND: Gliomas remain refractory to all attempted treatments, including those using immune checkpoint inhibitors. The characterization of the tumor (immune) microenvironment has been recognized as an important challenge to explain this lack of response and to improve the therapy of glial tumors. METHODS: We designed a prospective analysis of the immune cells of gliomas by flow cytometry. Tumors with or without isocitrate dehydrogenase 1/2 (IDH1/2) mutations were included in the study. The genetic profile and the presence of different molecular and cellular features of the gliomas were analyzed in parallel. The findings were validated in syngeneic mouse models. RESULTS: We observed that few immune cells infiltrate mutant IDH1/2 gliomas whereas the immune content of IDH1/2 wild-type tumors was more heterogeneous. Some of them contained an important immune infiltrate, particularly enriched in myeloid cells with immunosuppressive features, but others were more similar to mutant IDH1/2 gliomas, with few immune cells and a less immunosuppressive profile. Notably, we observed a direct correlation between the percentage of leukocytes and the presence of vascular alterations, which were associated with a reduced expression of Tau, a microtubule-binding protein that controls the formation of tumor vessels in gliomas. Furthermore, overexpression of Tau was able to reduce the immune content in orthotopic allografts of GL261 cells, delaying tumor growth. CONCLUSIONS: We have confirmed the reduced infiltration of immune cells in IDH1/2 mutant gliomas. By contrast, in IDH1/2 wild-type gliomas, we have found a direct correlation between the presence of vascular alterations and the entrance of leukocytes into the tumors. Interestingly, high levels of Tau inversely correlated with the vascular and the immune content of gliomas. Altogether, our results could be exploited for the design of more successful clinical trials with immunomodulatory molecules.

10.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570988

RESUMO

Brain tumors encompass a diverse group of neoplasias arising from different cell lineages. Tumors of glial origin have been the subject of intense research because of their rapid and fatal progression. From a clinical point of view, complete surgical resection of gliomas is highly difficult. Moreover, the remaining tumor cells are resistant to traditional therapies such as radio- or chemotherapy and tumors always recur. Here we have revised the new genetic and epigenetic classification of gliomas and the description of the different transcriptional subtypes. In order to understand the progression of the different gliomas we have focused on the interaction of the plastic tumor cells with their vasculature-rich microenvironment and with their distinct immune system. We believe that a comprehensive characterization of the glioma microenvironment will shed some light into why these tumors behave differently from other cancers. Furthermore, a novel classification of gliomas that could integrate the genetic background and the cellular ecosystems could have profound implications in the efficiency of current therapies as well as in the development of new treatments.

11.
Cancers (Basel) ; 12(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947645

RESUMO

Despite the high frequency of EGFR and TP53 genetic alterations in gliomas, little is known about their crosstalk during tumor progression. Here, we described a mutually exclusive distribution between mutations in these two genes. We found that wild-type p53 gliomas are more aggressive than their mutant counterparts, probably because the former accumulate amplifications and/or mutations in EGFR and show a stronger activation of this receptor. In addition, we identified a series of genes associated with vesicular trafficking of EGFR in p53 wild-type gliomas. Among these genes, TMEM167A showed the strongest implication in overall survival in this group of tumors. In agreement with this observation, inhibition of TMEM167A expression impaired the subcutaneous and the intracranial growth of wild-type p53 gliomas, regardless of the presence of EGFR mutations. In the absence of p53 mutations, TMEM167A knockdown reduced the acidification of intracellular vesicles, affecting the autophagy process and impairing EGFR trafficking and signaling. This effect was mimicked by an inhibitor of the vacuolar ATPase. We propose that the increased aggressiveness of wild-type p53 gliomas might be due to the increase in growth factor signaling activity, which depends on the regulation of vesicular trafficking by TMEM167A.

12.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969485

RESUMO

Gliomas that express the mutated isoforms of isocitrate dehydrogenase 1/2 (IDH1/2) have better prognosis than wild-type (wt) IDH1/2 gliomas. However, how these mutant (mut) proteins affect the tumor microenvironment is still a pending question. Here, we describe that the transcription of microtubule-associated protein TAU (MAPT), a gene that has been classically associated with neurodegenerative diseases, is epigenetically controlled by the balance between wt and mut IDH1/2 in mouse and human gliomas. In IDH1/2 mut tumors, we found high expression of TAU that decreased with tumor progression. Furthermore, MAPT was almost absent from tumors with epidermal growth factor receptor (EGFR) mutations, whereas its trancription negatively correlated with overall survival in gliomas carrying wt or amplified (amp) EGFR We demonstrated that the overexpression of TAU, through the stabilization of microtubules, impaired the mesenchymal/pericyte-like transformation of glioma cells by blocking EGFR, nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and the transcriptional coactivator with PDZ-binding motif (TAZ). Our data also showed that mut EGFR induced a constitutive activation of this pathway, which was no longer sensitive to TAU. By inhibiting the transdifferentiation capacity of EGFRamp/wt tumor cells, TAU protein inhibited angiogenesis and favored vascular normalization, decreasing glioma aggressiveness and increasing their sensitivity to chemotherapy.


Assuntos
Receptores ErbB/metabolismo , Glioma/metabolismo , Isocitrato Desidrogenase/metabolismo , Proteínas tau/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Endoteliais/metabolismo , Receptores ErbB/genética , Glioma/genética , Humanos , Imuno-Histoquímica , Isocitrato Desidrogenase/genética , Camundongos , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas tau/genética
13.
Front Aging Neurosci ; 11: 231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551755

RESUMO

The analysis of global and comparative genomics between different diseases allows us to understand the key biological processes that explain the etiology of these pathologies. We have used this type of approach to evaluate the expression of several neurodegeneration-related genes on the development of tumors, particularly brain tumors of glial origin (gliomas), which are an aggressive and incurable type of cancer. We have observed that genes involved in Amyotrophic lateral sclerosis (ALS), as well as in Alzheimer's and Parkinson's diseases, correlate with better prognosis of gliomas. Within these genes, high Tau/MAPT expression shows the strongest correlation with several indicators of prolonged survival on glioma patients. Tau protein regulates microtubule stability and dynamics in neurons, although there have been reports of its expression in glial cells and also in gliomas. However, little is known about the regulation of Tau/MAPT transcription in tumors. Moreover, our in silico analysis indicates that this gene is also expressed in a variety of tumors, showing a general correlation with survival, although its function in cancer has not yet been addressed. Another remarkable aspect of Tau is its involvement in resistance to taxanes in various tumors types such as breast, ovarian and gastric carcinomas. This is due to the fact that taxanes have the same tubulin-binding site as Tau. In the present work we review the main knowledge about Tau function and expression in tumors, with a special focus on brain cancer. We will also speculate with the therapeutic implications of these findings.

14.
Oxid Med Cell Longev ; 2019: 9719730, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467641

RESUMO

Glioblastoma (GBM) is the most common and devastating primary brain tumor. The presence of cancer stem cells (CSCs) has been linked to their therapy resistance. Molecular and cellular components of the tumor microenvironment also play a fundamental role in the aggressiveness of these tumors. In particular, high levels of hypoxia and reactive oxygen species participate in several aspects of GBM biology. Moreover, GBM contains a large number of macrophages, which normally behave as immunosuppressive tumor-supportive cells. In fact, the presence of both, hypoxia and M2-like macrophages, correlates with malignancy and poor prognosis in gliomas. Antioxidant agents, as nutritional supplements, might have antitumor activity. Ocoxin® oral solution (OOS), in particular, has anti-inflammatory and antioxidant properties, as well as antitumor properties in several neoplasia, without known side effects. Here, we describe how OOS affects stem cell properties in certain GBMs, slowing down their tumor growth. In parallel, OOS has a direct effect on macrophage polarization in vitro and in vivo, inhibiting the protumoral features of M2 macrophages. Therefore, OOS could be a feasible candidate to be used in combination therapies during GBM treatment because it can target the highly resilient CSCs as well as their supportive immune microenvironment, without adding toxicity to conventional treatments.


Assuntos
Ácido Ascórbico/uso terapêutico , Glioblastoma/tratamento farmacológico , Macrófagos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Extratos Vegetais/uso terapêutico , Vitamina B 12/uso terapêutico , Vitamina B 6/uso terapêutico , Animais , Ácido Ascórbico/farmacologia , Ácido Fólico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Ácido Pantotênico , Extratos Vegetais/farmacologia , Vitamina B 12/farmacologia , Vitamina B 6/farmacologia , Sulfato de Zinco
15.
Glia ; 67(2): 404-417, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506943

RESUMO

Genetic lesions in glioblastoma (GB) include constitutive activation of PI3K and EGFR pathways to drive cellular proliferation and tumor malignancy. An RNAi genetic screen, performed in Drosophila melanogaster to discover new modulators of GB development, identified a member of the secretory pathway: kish/TMEM167A. Downregulation of kish/TMEM167A impaired fly and human glioma formation and growth, with no effect on normal glia. Glioma cells increased the number of recycling endosomes, and reduced the number of lysosomes. In addition, EGFR vesicular localization was primed toward recycling in glioma cells. kish/TMEM167A downregulation in gliomas restored endosomal system to a physiological state and altered lysosomal function, fueling EGFR toward degradation by the proteasome. These endosomal effects mirrored the endo/lysosomal response of glioma cells to Brefeldin A (BFA), but not the Golgi disruption and the ER collapse, which are associated with the undesirable toxicity of BFA in other cancers. Our results suggest that glioma growth depends on modifications of the vesicle transport system, reliant on kish/TMEM167A. Noncanonical genes in GB could be a key for future therapeutic strategies targeting EGFR-dependent gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Drosophila/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/metabolismo , Transporte Proteico/genética , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Inibidores Enzimáticos/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Glioma/patologia , Xenoenxertos , Humanos , Leupeptinas/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Interferência de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA