Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Ther Adv Med Oncol ; 15: 17588359231156871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936198

RESUMO

Background and Aims: Early-stage small intestinal neuroendocrine tumors (SI-NETs) are generally asymptomatic and difficult to diagnose. As a result, patients often present with late-stage incurable disease. SI-NETs originate from enterochromaffin (EC) cells, which develop enteroendocrine cell (EEC) clusters consisting of a subset of EC cells at the crypt bottom at an early stage of tumor progression. In a familial form of SI-NET, EEC clusters arise in a multifocal and polyclonal fashion. We sought to determine whether early detection and analysis of cryptal EEC clusters could provide insight into the development of SI-NETs and allow successful pre-symptomatic screening for at risk family members of patients with SI-NETs. Methods: Isolated crypts from endoscopic ileal biopsies or surgically removed specimens from 43 patients with familial SI-NET and 20 controls were formalin-fixed, immunostained for chromogranin A, and examined by confocal three-dimensional analysis for the presence of EEC cluster formations. Results: Examination of multiple areas of macroscopic tumor-free mucosa in surgically resected specimens from patients with familial SI-NET revealed widely distributed, independent, multifocal EEC micro-tumor formations of varying sizes. Consistent with this finding, randomly sampled ileal biopsy specimens identified aberrant crypt containing endocrine cell clusters (ACECs) in patients. ACECs were found exclusively in patients (23/43, 53%) and not in controls (0/20). Furthermore, analysis of positions and numbers of EECs in crypts and ACECs indicated significant increases in EECs at the crypt bottom, predominantly at positions 0 and 1' (p < 0.0001 compared to controls), suggesting the progression of EEC accumulation below +4 position as the early process of ACEC formation. These findings also suggested that ACECs were precursors in the development of micro-tumors and subsequent macro-tumors. Conclusion: This study indicates that SI-NETs develop from deep crypt EC cells to become ACECs, micro-tumors, and ultimately gross tumors. This process occurs widely throughout the distal small intestine in patients with familial SI-NETs consistent with but not exclusively explained by germline disease. Finally, analysis of crypts from ileal biopsies could contribute in part to earlier diagnostic screening processes avoiding late-stage presentation of incurable disease.

2.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G177-G189, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537709

RESUMO

Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Camundongos , Animais , Células Enterocromafins/metabolismo , Intestino Delgado/patologia , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/metabolismo , Adenocarcinoma/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G494-G501, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845170

RESUMO

Small intestinal neuroendocrine tumors (SI-NET) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. Recent studies recognize a subset of EC cells that is label-retaining at the +4 position in the crypt and functions as a reserve intestinal stem cell. Importantly, this +4 reserve EC cell subset not only contributes to regeneration of the intestinal epithelium during injury and inflammation but also to basal crypt homeostasis at a constant rate. The latter function suggests that the +4 EC cell subset serves as an active reserve stem cell via a constant rate of dedifferentiation. Characterization of early tumor formation of SI-NET, observed as crypt-based EC cell clusters in many cases of familial SI-NETs, suggests that the +4 active reserve EC cell subset is the cell of origin. This newly discovered active reserve stem cell property of EC cells can account for unique biological mechanisms and processes associated with the genesis and development of SI-NETs. The recognition of this property of the +4 active reserve EC cell subset may provide novel opportunities to explore NETs in the gastrointestinal tract and other organs.


Assuntos
Células Enterocromafins/patologia , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Tumores Neuroendócrinos/patologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Animais , Carcinogênese/patologia , Desdiferenciação Celular , Células Enterocromafins/fisiologia , Humanos , Camundongos , Tumores Neuroendócrinos/metabolismo , Serotonina/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G64-G74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359083

RESUMO

The normal intestinal epithelium is continuously regenerated at a rapid rate from actively cycling Lgr5-expressing intestinal stem cells (ISCs) that reside at the crypt base. Recent mathematical modeling based on several lineage-tracing studies in mice shows that the symmetric cell division-dominant neutral drift model fits well with the observed in vivo growth of ISC clones and suggests that symmetric divisions are central to ISC homeostasis. However, other studies suggest a critical role for asymmetric cell division in the maintenance of ISC homeostasis in vivo. Here, we show that the stochastic branching and Moran process models with both a symmetric and asymmetric division mode not only simulate the stochastic growth of the ISC clone in silico but also closely fit the in vivo stem cell dynamics observed in lineage-tracing studies. In addition, the proposed model with highest probability for asymmetric division is more consistent with in vivo observations reported here and by others. Our in vivo studies of mitotic spindle orientations and lineage-traced progeny pairs indicate that asymmetric cell division is a dominant mode used by ISCs under normal homeostasis. Therefore, we propose the asymmetric cell division-dominant neutral drift model for normal ISC homeostasis. NEW & NOTEWORTHY The prevailing mathematical model suggests that intestinal stem cells (ISCs) divide symmetrically. The present study provides evidence that asymmetric cell division is the major contributor to ISC maintenance and thus proposes an asymmetric cell division-dominant neutral drift model. Consistent with this model, in vivo studies of mitotic spindle orientation and lineage-traced progeny pairs indicate that asymmetric cell division is the dominant mode used by ISCs under normal homeostasis.


Assuntos
Divisão Celular Assimétrica/fisiologia , Homeostase/fisiologia , Intestinos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Mucosa Intestinal/citologia , Camundongos , Regeneração/fisiologia
5.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G495-G510, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848020

RESUMO

Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Proliferação de Células , Células Enteroendócrinas/citologia , Intestino Delgado/citologia , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Enteroendócrinas/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Gastroenterology ; 151(1): 140-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003604

RESUMO

BACKGROUND & AIMS: Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS: We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS: We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS: Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.


Assuntos
Carcinogênese/genética , Neoplasias do Íleo/genética , Neoplasias do Jejuno/genética , Família Multigênica/genética , Tumores Neuroendócrinos/genética , Células Enterocromafins/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Intestino Delgado/citologia , Complexo Repressor Polycomb 1/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo , Triptofano Hidroxilase/genética , Proteínas Supressoras de Tumor/genética
7.
Gastroenterology ; 149(1): 67-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25865046

RESUMO

BACKGROUND & AIMS: Small intestinal carcinoids are rare and difficult to diagnose and patients often present with advanced incurable disease. Although the disease occurs sporadically, there have been reports of family clusters. Hereditary small intestinal carcinoid has not been recognized and genetic factors have not been identified. We performed a genetic analysis of families with small intestinal carcinoids to establish a hereditary basis and find genes that might cause this cancer. METHODS: We performed a prospective study of 33 families with at least 2 cases of small intestinal carcinoids. Affected members were characterized clinically and asymptomatic relatives were screened and underwent exploratory laparotomy for suspected tumors. Disease-associated mutations were sought using linkage analysis, whole-exome sequencing, and copy number analyses of germline and tumor DNA collected from members of a single large family. We assessed expression of mutant protein, protein activity, and regulation of apoptosis and senescence in lymphoblasts derived from the cases. RESULTS: Familial and sporadic carcinoids are clinically indistinguishable except for the multiple synchronous primary tumors observed in most familial cases. Nearly 34% of asymptomatic relatives older than age 50 were found to have occult tumors; the tumors were cleared surgically from 87% of these individuals (20 of 23). Linkage analysis and whole-exome sequencing identified a germline 4-bp deletion in the gene inositol polyphosphate multikinase (IPMK), which truncates the protein. This mutation was detected in all 11 individuals with small intestinal carcinoids and in 17 of 35 family members whose carcinoid status was unknown. Mutant IPMK had reduced kinase activity and nuclear localization, compared with the full-length protein. This reduced activation of p53 and increased cell survival. CONCLUSIONS: We found that small intestinal carcinoids can occur as an inherited autosomal-dominant disease. The familial form is characterized by multiple synchronous primary tumors, which might account for 22%-35% of cases previously considered sporadic. Relatives of patients with familial carcinoids should be screened to detect curable early stage disease. IPMK haploinsufficiency promotes carcinoid tumorigenesis.


Assuntos
Tumor Carcinoide/genética , Mutação em Linhagem Germinativa , Neoplasias Intestinais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patologia , Família , Feminino , Humanos , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/patologia , Laparotomia , Masculino , Pessoa de Meia-Idade , Linhagem , Estudos Prospectivos , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 109(30): 12165-70, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22689948

RESUMO

Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.


Assuntos
Adenina/análogos & derivados , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinas/farmacologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Adenina/química , Adenina/farmacologia , Anfetamina/antagonistas & inibidores , Análise de Variância , Animais , Antipsicóticos/farmacologia , Linfócitos B , Western Blotting , Linhagem Celular Transformada , Classe I de Fosfatidilinositol 3-Quinases , Receptores ErbB/genética , Citometria de Fluxo , Estudos de Associação Genética , Humanos , Camundongos , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Quinazolinas/química , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/tratamento farmacológico
9.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G538-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21252045

RESUMO

The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Fenilalanina/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Duodeno/citologia , Imunofluorescência , Camundongos , Camundongos Transgênicos , Fenilalanina/metabolismo , Receptores de Detecção de Cálcio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Gastroenterology ; 140(3): 903-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20955703

RESUMO

BACKGROUND & AIMS: Long-chain fatty acid receptors G-protein-coupled receptor 40 (GPR40) (FFAR1) and GPR120 have been implicated in the chemosensation of dietary fats. I cells in the intestine secrete cholecystokinin (CCK), a peptide hormone that stimulates digestion of fat and protein, but these cells are rare and hard to identify. We sought to determine whether dietary fat-induced secretion of CCK is directly mediated by GPR40 expressed on I cells. METHODS: We used fluorescence-activated cell sorting to isolate a pure population of I cells from duodenal mucosa in transgenic mice that expressed green fluorescent protein under the control of the CCK promoter (CCK-enhanced green fluorescent protein [eGFP] bacterial artificial chromosome mice). CCK-eGFP cells were evaluated for GPR40 expression by quantitative reverse transcription polymerase chain reaction and immunostaining. GPR40(-/-) mice were bred with CCK-eGFP mice to evaluate functional relevance of GPR40 on long-chain fatty acid-stimulated increases in [Ca(2+)]i and CCK secretion in isolated CCK-eGFP cells. Plasma levels of CCK after olive oil gavage were compared between GPR40(+/+) and GPR40(-/-) mice. RESULTS: Cells that expressed eGFP also expressed GPR40; expression of GPR40 was 100-fold greater than that of cells that did not express eGFP. In vitro, linoleic, oleic, and linolenic acids increased [Ca(2+)]i; linolenic acid increased CCK secretion by 53% in isolated GPR40(+/+) cells that expressed eGFP. In contrast, in GPR40(-/-) that expressed eGFP, [Ca(2+)]i response to linoleic acid was reduced by 50% and there was no significant CCK secretion in response to linolenic acid. In mice, olive oil gavage significantly increased plasma levels of CCK compared with pregavage levels: 5.7-fold in GPR40(+/+) mice and 3.1-fold in GPR40(-/-) mice. CONCLUSIONS: Long-chain fatty acid receptor GPR40 induces secretion of CCK by I cells in response to dietary fat.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Ácidos Graxos/metabolismo , Mucosa Intestinal/metabolismo , Óleos de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Separação Celular/métodos , Colecistocinina/genética , Cromossomos Artificiais Bacterianos , Duodeno/citologia , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Mucosa Intestinal/citologia , Intubação Gastrointestinal , Ácido Linoleico/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Oleico/metabolismo , Azeite de Oliva , Óleos de Plantas/administração & dosagem , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Ácido alfa-Linolênico/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 300(2): G345-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21088235

RESUMO

The spatial orientation of the enteroendocrine cells along the crypt-villus axis is closely associated with their differentiation in the intestine. Here we studied this relationship using primary duodenal crypts and an ex vivo organoid system established from cholecystokinin-green fluorescent protein (CCK-GFP) transgenic mice. In the primary duodenal crypts, GFP+ cells were found not only in the upper crypt but also at the crypt base, where the stem cells reside. Many GFP+ cells below +4 position were positive for the putative intestinal stem cell markers, leucine-rich repeat-containing G protein-coupled receptor 5, CD133, and doublecortin and CaM kinase-like-1, and also for the neuroendocrine transcription factor neurogenin 3. However, these cells were neither stem nor transient amplifying precursor cells because they were negative for both Ki-67 and phospho-Histone H3 and positive for the mature endocrine marker chromogranin A. Furthermore, these cells expressed multiple endocrine hormones. Tracking of GFP+ cells in the organoids from CCK-GFP mice indicated that GFP+ cells were first observed around the +4 position, some of which localized to the crypt base later in the culture period. These results suggest that a subset of enteroendocrine cells migrates down to the crypt base or stays localized at the crypt base, where they express stem and postmitotic endocrine markers. Further investigation of the function of this subset may provide novel insights into the genesis and development of enteroendocrine cells as well as enteroendocrine tumorigenesis.


Assuntos
Biomarcadores/metabolismo , Duodeno/citologia , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Células-Tronco/metabolismo , Animais , Movimento Celular , Colecistocinina/genética , Colecistocinina/metabolismo , Cromogranina A/metabolismo , Células Enteroendócrinas/classificação , Células Enteroendócrinas/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Técnicas Imunológicas , Camundongos , Camundongos Transgênicos , Organoides , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Coloração e Rotulagem , Distribuição Tecidual
12.
PLoS One ; 5(5): e10789, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20520724

RESUMO

BACKGROUND: Neuregulin1 (NRG1)-ErbB signaling has been implicated in the pathogenesis of cancer and schizophrenia. We have previously reported that NRG1-stimulated migration of B lymphoblasts is PI3K-AKT1dependent and impaired in patients with schizophrenia and significantly linked to the catechol-o-methyltransferase (COMT) Val108/158Met functional polymorphism. METHODOLOGY/PRINCIPAL FINDINGS: We have now examined AKT1 activation in NRG1-stimulated B lymphoblasts and other cell models and explored a functional relationship between COMT and AKT1. NRG1-induced AKT1 phosphorylation was significantly diminished in Val carriers compared to Met carriers in both normal subjects and in patients. Further, there was a significant epistatic interaction between a putatively functional coding SNP in AKT1 (rs1130233) and COMT Val108/158Met genotype on AKT1 phosphorylation. NRG1 induced translocation of AKT1 to the plasma membrane also was impaired in Val carriers, while PIP(3) levels were not decreased. Interestingly, the level of COMT enzyme activity was inversely correlated with the cells' ability to synthesize phosphatidylserine (PS), a factor that attracts the pleckstrin homology domain (PHD) of AKT1 to the cell membrane. Transfection of SH-SY5Y cells with a COMT Val construct increased COMT activity and significantly decreased PS levels as well as NRG1-induced AKT1 phosphorylation and migration. Administration of S-adenosylmethionine (SAM) rescued all of these deficits. These data suggest that AKT1 function is influenced by COMT enzyme activity through competition with PS synthesis for SAM, which in turn dictates AKT1-dependent cellular responses to NRG1-mediated signaling. CONCLUSION/SIGNIFICANCE: Our findings implicate genetic and functional interactions between COMT and AKT1 and may provide novel insights into pathogenesis of schizophrenia and other ErbB-associated human diseases such as cancer.


Assuntos
Catecol O-Metiltransferase/metabolismo , Epistasia Genética , Receptores ErbB/metabolismo , Modelos Biológicos , Neuregulina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Substituição de Aminoácidos/genética , Linfócitos B/enzimologia , Catecol O-Metiltransferase/genética , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Transfecção
13.
PLoS One ; 5(12): e15566, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21203569

RESUMO

BACKGROUND: The 14-3-3 proteins are structurally conserved throughout eukaryotes and participate in protein kinase signaling. All 14-3-3 proteins are known to bind to evolutionally conserved phosphoserine-containing motifs (modes 1 and/or 2) with high affinity. In Trypanosoma brucei, 14-3-3I and II play pivotal roles in motility, cytokinesis and the cell cycle. However, none of the T. brucei 14-3-3 binding proteins have previously been documented. METHODOLOGY/PRINCIPAL FINDINGS: Initially we showed that T. brucei 14-3-3 proteins exhibit far lower affinity to those peptides containing RSxpSxP (mode 1) and RxY/FxpSxP (mode 2) (where x is any amino acid residue and pS is phosphoserine) than human 14-3-3 proteins, demonstrating the atypical target recognition by T. brucei 14-3-3 proteins. We found that the putative T. brucei protein phosphatase 2C (PP2c) binds to T. brucei 14-3-3 proteins utilizing its mode 3 motif (-pS/pTx(1-2)-COOH, where x is not Pro). We constructed eight chimeric PP2c proteins replacing its authentic mode 3 motif with potential mode 3 sequences found in Trypanosoma brucei genome database, and tested their binding. As a result, T. brucei 14-3-3 proteins interacted with three out of eight chimeric proteins including two with high affinity. Importantly, T. brucei 14-3-3 proteins co-immunoprecipitated with an uncharacterized full-length protein containing identified high-affinity mode 3 motif, suggesting that both proteins form a complex in vivo. In addition, a synthetic peptide derived from this mode 3 motif binds to T. brucei 14-3-3 proteins with high affinity. CONCLUSION/SIGNIFICANCE: Because of the atypical target recognition of T. brucei 14-3-3 proteins, no 14-3-3-binding proteins have been successfully identified in T. brucei until now whereas over 200 human 14-3-3-binding proteins have been identified. This report describes the first discovery of the T. brucei 14-3-3-binding proteins and their binding motifs. The high-affinity phosphopeptide will be a powerful tool to identify novel T. brucei 14-3-3-binding proteins.


Assuntos
Proteínas 14-3-3/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Anticorpos Monoclonais/química , Ciclo Celular , Movimento Celular , Células HeLa , Humanos , Modelos Biológicos , Fosfopeptídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Recombinantes de Fusão/química
14.
J Atheroscler Thromb ; 16(6): 870-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20032581

RESUMO

AIM: Statins are effective in lowering cholesterol levels, but cause fatal rhabdomyolysis in susceptible individuals. Because it has been hypothesized that muscle damage could result from alterations in Ca(2+) homeostasis in muscle cells, we tested whether measuring statin-induced changes in intracellular calcium ([Ca(2+)](i)) is useful for predicting susceptibility to statin-muscle damage, using human CD19+ primary B lymphocytes. METHODS: Statin-induced alterations in [Ca(2+)](i) were studied using the human THP-1 cell line and CD19+ primary B lymphocytes. Changes in [Ca(2+)](i) were measured directly in fluo-3- loaded cells using either single or dual-color flow cytometry. RESULTS: The Ca(2+) release study suggested that statin-induced changes in [Ca(2+)](i) were due to Ca(2+) release from ryanodine-sensitive Ca(2+) stores and mitochondrial compartments. Further, statin users who experienced elevated creatine kinase (n=8) exhibited significantly greater statin-induced Ca(2+) release in B cells than healthy volunteers (n=45) and statin users without elevated creatine kinase (n=16), while no difference was seen between the latter two groups. CONCLUSION: Statin-induced Ca(2+) release from ryanodine-sensitive stores and mitochondria may contribute to myotoxicity. The laboratory test for Ca(2+) release using CD19+ primary B lymphocytes may be useful to predict susceptibility to statin-induced muscle toxicity prior to statin use.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Cálcio/metabolismo , Creatina Quinase/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Adulto , Idoso , Antígenos CD19/biossíntese , Linhagem Celular , Creatina Quinase/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/farmacologia , Humanos , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(37): 15873-8, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805229

RESUMO

Disrupted-In-Schizophrenia-1 (DISC1) is a promising susceptibility gene for major mental illness, but the mechanism of the clinical association is unknown. We searched for DISC1 transcripts in adult and fetal human brain and tested whether their expression is altered in patients with schizophrenia and is associated with genetic variation in DISC1. Many alternatively spliced transcripts were identified, including groups lacking exon 3 (Delta3), exons 7 and 8 (Delta7Delta8), an exon 3 insertion variant (extra short variant-1, Esv1), and intergenic splicing between TSNAX and DISC1. Isoforms Delta7Delta8, Esv1, and Delta3, which encode truncated DISC1 proteins, were expressed more abundantly during fetal development than during postnatal ages, and their expression was higher in the hippocampus of patients with schizophrenia. Schizophrenia risk-associated polymorphisms [non-synonymous SNPs rs821616 (Cys704Ser) and rs6675281 (Leu607Phe), and rs821597] were associated with the expression of Delta3 and Delta7Delta8. Moreover, the same allele at rs6675281, which predicted higher expression of these transcripts in the hippocampus, was associated with higher expression of DISC1Delta7Delta8 in lymphoblasts in an independent sample. Our results implicate a molecular mechanism of genetic risk associated with DISC1 involving specific alterations in gene processing.


Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , Sequência de Bases , Encéfalo/embriologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Primers do DNA/genética , Éxons , Feminino , Desenvolvimento Fetal/genética , Feto/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Esquizofrenia/metabolismo , Regulação para Cima
16.
PLoS One ; 2(12): e1369, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18159252

RESUMO

BACKGROUND: Neuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1alpha-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer. METHODOLOGY/PRINCIPAL FINDINGS: Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1alpha induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1alpha-induced migration (r(2) = 0.61). NRG1alpha-induced adhesion variation is blocked by erbB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the erbB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1alpha-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1alpha-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063). CONCLUSION/SIGNIFICANCE: Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion.


Assuntos
Adesão Celular/fisiologia , Neoplasias/fisiopatologia , Neuregulina-1/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/fisiologia , Esquizofrenia/fisiopatologia , Humanos , Mimetismo Molecular , Neoplasias/enzimologia , Neoplasias/metabolismo , Esquizofrenia/enzimologia , Esquizofrenia/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
17.
J Neurosci ; 27(45): 12390-5, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17989303

RESUMO

The schizophrenia susceptibility gene dystrobrevin-binding protein 1 (DTNBP1) encodes dysbindin, which along with its binding partner Muted is an essential component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin expression is reduced in schizophrenic brain tissue, but the molecular mechanisms by which this contributes to pathogenesis and symptomatology are unknown. We studied the effects of transfection of DTNBP1 siRNA on cell surface levels of dopamine D2 receptor (DRD2) in human SH-SY5Y neuroblastoma cells and in rat primary cortical neurons. DTNBP1 siRNA decreased dysbindin protein, increased cell surface DRD2 and blocked dopamine-induced DRD2 internalization. MUTED siRNA produced similar effects. In contrast, decreased dysbindin did not change dopamine D1 receptor (DRD1) levels, or its basal or dopamine-induced internalization. The DRD2 agonist quinpirole reduced phosphorylation of CREB (cAMP response element-binding protein) in dysbindin downregulated cells, demonstrating enhanced intracellular signaling caused by the upregulation of DRD2. This is the first demonstration of a schizophrenia susceptibility gene exerting a functional effect on DRD2 signaling, a pathway that has long been implicated in the illness. We propose a molecular mechanism for pathogenesis in which risk alleles in DTNBP1, or other factors that also downregulate dysbindin, compromise the ability of BLOC-1 to traffic DRD2 toward degradation, but has little effect on DRD1 trafficking. Impaired trafficking of DRD2 decreases dopamine-induced internalization, and with more receptors retained on the cell surface, dopamine stimulation produces excess intracellular signaling. Such an increase in DRD2 signaling relative to DRD1 would contribute to the imbalances in dopaminergic neurotransmission characteristic of schizophrenia.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/fisiologia , Alelos , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Dopamina/fisiologia , Disbindina , Proteínas Associadas à Distrofina , Humanos , Proteínas do Tecido Nervoso/genética , Ratos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiologia , Fatores de Risco , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais/genética
18.
J Neurochem ; 96(4): 1139-48, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16417579

RESUMO

The metabotropic glutamate receptor 3 (GRM3, mGluR3) is important in regulating synaptic glutamate. Here, we report the existence of three splice variants of GRM3 in human brain arising from exon skipping events. The transcripts are expressed in prefrontal cortex, hippocampus and cerebellum, and in B lymphoblasts. We found no evidence for alternative splicing of GRM2. The most abundant GRM3 variant lacks exon 4 (GRM3Delta4). In silico translation analysis of GRM3Delta4 predicts a truncated protein with a conserved extracellular ligand binding domain, absence of a seven-transmembrane domain, and a unique 96-amino acid C-terminus. When expressed in rat hippocampal neurons, GRM3Delta4 is translated into a 60 kDa protein. Immunostaining and cell fractionation data indicate that the truncated protein is primarily membrane-associated. An antibody developed against the GRM3Delta4 C-terminus detects a protein of approximately 60 kDa in human brain lysates and in B lymphoblasts, suggesting translation of GRM3Delta4 in vivo. The existence of the GRM3Delta4 isoform is relevant in the light of the reported association of non-coding single nucleotide polymorphisms (SNPs) in GRM3 with schizophrenia, and with the potential of GRM3 as a therapeutic target for several neuropsychiatric disorders.


Assuntos
Processamento Alternativo , Receptores de Glutamato Metabotrópico/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Cricetinae , Primers do DNA , Feminino , Humanos , Rim , Masculino , Dados de Sequência Molecular , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/genética , Transcrição Gênica , Transfecção
19.
Anesthesiology ; 101(4): 824-30, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15448513

RESUMO

BACKGROUND: Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle, manifested as a life-threatening hypermetabolic crisis after exposure to anesthetics. Type I ryanodine receptor 1 is the primary gene responsible for susceptibility to MH as well as central core disease, a congenital myopathy that predisposes susceptibility to MH. More than 40 mutations in the RyR1 gene cluster in three coding regions: the N-terminus, central, and C-terminus regions. However, the frequency of mutations in each region has not been studied in the North American MH-susceptible population. METHODS: The authors tested 124 unrelated patients with MH susceptibility for the presence of mutations in the N-terminus (exons 2, 6, 9, 11, 12, and 17), central (exons 39, 40, 44, 45, and 46), and C-terminus (exons 95, 100, 101, and 102) regions. RESULTS: Fourteen mutations have been identified in 29 of 124 MH-susceptible patients (23%). Approximately 70% of the mutations, which include a novel mutation, Ala 2437Val, were in the central region. In 8 patients (28%), mutations were identified in the N-terminus region. Screening the C-terminus region yielded a novel mutation, Leu4824Pro, in a single patient with a diagnosis of central core disease. CONCLUSIONS: The detection rate for mutations is only 23% by screening mutations (or exons) listed in the 2002 North American consensus panel. The implications from this study suggest that testing the central region first is currently the most effective screening strategy for the North American population. Screening more exons in the three hot spots may be needed to find an accurate frequency of mutations in the RyR1 gene.


Assuntos
Hipertermia Maligna/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cálcio/metabolismo , Éxons , Humanos , Hipertermia Maligna/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA