Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 13(1): 90-99, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28905187

RESUMO

Pro-inflammatory activity and cell-mediated immune responses have been widely observed in patients with major depressive disorder (MDD). Besides their well-known function as antibody-producers, B cells play a key role in inflammatory responses by secreting pro- and anti-inflammatory factors. However, homeostasis of specific B cell subsets has not been comprehensively investigated in MDD. In this study, we characterized circulating B cells of distinct developmental steps including transitional, naïve-mature, antigen-experienced switched, and non-switched memory cells, plasmablasts and regulatory B cells by multi-parameter flow cytometry. In a 6-weeks follow-up, circulating B cells were monitored in a small group of therapy responders and non-responders. Frequencies of naïve lgD+CD27- B cells, but not lgD+CD27+ memory B cells, were reduced in severely depressed patients as compared to healthy donors (HD) or mildly to moderately depressed patients. Specifically, B cells with immune-regulatory capacities such as CD1d+CD5+ B cells and CD24+CD38hi transitional B cells were reduced in MDD. Also Bm1-Bm5 classification in MDD revealed reduced Bm2' cells comprising germinal center founder cells as well as transitional B cells. We further found that reduced CD5 surface expression on transitional B cells was associated with severe depression and normalized exclusively in clinical responders. This study demonstrates a compromised peripheral B cell compartment in MDD with a reduction in B cells exhibiting a regulatory phenotype. Recovery of CD5 surface expression on transitional B cells in clinical response, a molecule involved in activation and down-regulation of B cell responses, further points towards a B cell-dependent process in the pathogenesis of MDD.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B Reguladores/imunologia , Transtorno Depressivo Maior/imunologia , Homeostase/imunologia , Adulto , Antígenos CD5/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
2.
Immunol Lett ; 160(2): 109-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24852107

RESUMO

B lymphocyte development in the mouse begins with the generation of long-term reconstituting, pluripotent hematopoietic stem cells, over multipotent myeloid/lymphoid progenitors and common lymphoid progenitors to B-lineage committed pro/pre B and pre B cells, which first express pre B cell receptors and then immunoglobulins, B cell receptors, to generate the repertoires of peripheral B cells. This development is influenced and guided by cells of non-hematopoietic and hematopoietic origins. We review here some of the recent developments, and our contributions in this fascinating field of developmental immunology.

3.
Immunol Lett ; 157(1-2): 60-3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24284375

RESUMO

B lymphocyte development in the mouse begins with the generation of long-term reconstituting, pluripotent hematopoietic stem cells, over multipotent myeloid/lymphoid progenitors and common lymphoid progenitors to B-lineage committed pro/pre B and pre B cells, which first express pre B cell receptors and then immunoglobulins, B cell receptors, to generate the repertoires of peripheral B cells. This development is influenced and guided by cells of non-hematopoietic and hematopoietic origins. We review here some of the recent developments, and our contributions in this fascinating field of developmental immunology.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Linfopoese/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feto , Humanos , Fígado/citologia , Fígado/metabolismo
4.
PLoS One ; 8(7): e70116, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922928

RESUMO

The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC) and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed "in vitro" from embryonic stem cells (ESC). We show that wild type, as well as Tal-1(-/-) and Runx1(-/-) ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+) mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+)Gr1(+)Mac1(+) myeloid cells, and to B220(+)CD19(+) B- and CD4(+)/CD8(+) T-lymphoid cells, Runx1(-/-) ESCs, as expected, only develop primitive erythrocytes, and Tal-1(-/-) ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(-/-) ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1-10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(-/-) ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of "in vitro" differentiating Tal-1(-/-) and Runx1(-/-) ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors "in vitro", and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Expressão Gênica , Hematopoese/fisiologia , Proteínas Proto-Oncogênicas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Eritropoese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência , Retroviridae/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transdução Genética
5.
Immunol Lett ; 143(1): 70-6, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22313949

RESUMO

Efficiencies of the generation of induced pluripotent stem (iPS) cells from either mouse embryonic fibroblasts (MEF) or from mouse fetal liver (FL) derived preB cells and their hematogenic potencies were compared. In 10 days approximately 2% of the MEFs transduced with Sox-2, Oct-4 and Klf-4 developed to iPS cells, while only 0.01% of transduced FL-preB cells yielded iPS cells, and only after around 3 weeks. Subsequently, the generated iPS cells were induced to differentiate into hematopoietic cells in vitro. On day 5 of differentiation MEF-iPS yielded numbers and percentages of Flk-1(+) mesodermal-like cells comparable to those developed from embryonic stem (ES) cells. Compared to ES cells further differentiation to hematopoietic and lymphopoietic cells was reduced, possibly because of persistent expression of the reprogramming factors. By contrast, FL-iPS cells developed lower numbers and percentages of Flk-1(+) cells, and no significant further development to hematopoietic or lymphopoietic cells could be induced. These results indicate that the efficiencies of iPS generation and subsequent hematopoietic development depends on the type of differentiated cell from which iPS cells are generated.


Assuntos
Células Sanguíneas/citologia , Diferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Sanguíneas/metabolismo , Linhagem da Célula , Células Cultivadas , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Camundongos
6.
J Biomed Biotechnol ; 2011: 895086, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22187531

RESUMO

We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


Assuntos
Reprogramação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Modelos Biológicos
7.
Stem Cells Dev ; 20(7): 1131-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21348597

RESUMO

Induced pluripotent stem (iPS) cells have been generated from bone marrow (BM) hematopoietic progenitor cells by ectopic expression of Sox-2, Oct-4, and Klf-4 with the hope that they may differentiate more efficiently than embryonic stem (ES) cells in vitro into hematopoietic cell lineages because of their epigenetic memory. An in vitro culture system has been standardized to allow a quantitative assessment of the capacities of different ES, BM-derived iPS, and fibroblast-derived iPS cell lines developing to erythroid, myeloid, and lymphoid cell lineages. Surprisingly, the efficiency to differentiate BM-derived iPS cells to hematopoietic cells in vitro is severely reduced compared with ES cells and fibroblast-derived iPS cells. Undifferentiated as well as differentiated stages of the BM-derived iPS lines express elevated mRNA levels of the transcription factors Sox-2, Oct-4, and Klf-4 with which the iPS cells have been transduced. Overexpression of the transcription factors inhibits development of Flk-1(+) mesodermal to CD45(+) hematopoietic progenitors. The overexpression of Sox-2 appears to be inversely related to hematogenic potency. These results suggest that iPS cell generation with the aim of developing hematopoietic cells should be controlled and selected for low levels of transduced Sox-2, Oct-4, and Kfl-4 expression.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo/métodos , Expressão Gênica , Vetores Genéticos , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Teratoma/metabolismo , Teratoma/secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA