Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(6): E448-57, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341616

RESUMO

HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.


Assuntos
DNA Glicosilases/metabolismo , DNA Viral/metabolismo , HIV-1/fisiologia , Integração Viral/fisiologia , Fármacos Anti-HIV/farmacologia , Sequência de Bases , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/genética , DNA Viral/química , DNA Viral/genética , Nucleotídeos de Desoxiuracil/metabolismo , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , HIV-1/genética , HIV-1/patogenicidade , Células HT29 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Inata , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Modelos Biológicos , Mutação , Quinazolinas/farmacologia , Transcrição Reversa , Tiofenos/farmacologia , Timidina/metabolismo , Timidina/farmacologia , Timidilato Sintase/antagonistas & inibidores , Vírion
2.
Mol Pharmacol ; 73(3): 669-77, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18042731

RESUMO

Human apurinic/apyrimidinic endonuclease (Ape1) plays an important role by processing the >10,000 highly toxic abasic sites generated in the genome of each cell every day. Ape1 has recently emerged as a target for inhibition, in that its overexpression in tumors has been linked with poor response to both radiation and chemotherapy and lower overall patient survival. Inhibition of Ape1 using siRNA or the expression of a dominant-negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. However, potent small-molecule inhibitors of Ape1 remain to be found. To this end, we screened Ape1 against the NCI Diversity Set of small molecules and discovered aromatic nitroso, carboxylate, sulfonamide, and arylstibonic acid compounds with micromolar affinities for the protein. A further screen of a 37-compound arylstibonic acid sublibrary identified ligands with IC(50) values in the range of 4 to 300 nM. The negatively charged stibonic acids act by a partial-mixed mode and probably serve as DNA phosphate mimics. These compounds provide a useful scaffold for development of chemotherapeutic agents against Ape1.


Assuntos
Antimônio/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Endonucleases/antagonistas & inibidores , Antimônio/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA/análise , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/isolamento & purificação , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , Modelos Químicos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/isolamento & purificação , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Nucleic Acids Res ; 34(20): 5872-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17062624

RESUMO

Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements. This high-throughput synthesis and screening approach produced two novel uracil-tethered inhibitors of UNG2, the best of which was crystallized with the enzyme. Remarkably, this inhibitor mimics the crucial hydrogen bonding and electrostatic interactions previously observed in UNG2 complexes with damaged uracilated DNA. Thus, the environment of the binding site selects for library ligands that share these DNA features. This is a general approach to rapid discovery of inhibitors of enzymes that recognize extrahelical damaged bases.


Assuntos
Dano ao DNA , DNA Glicosilases/química , Inibidores Enzimáticos/química , Oximas/química , Uracila/análogos & derivados , Sítios de Ligação , Linhagem Celular Tumoral , Técnicas de Química Combinatória , DNA Glicosilases/metabolismo , Reparo do DNA , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Oximas/farmacologia , Eletricidade Estática , Uracila/química , Uracila/farmacologia
4.
Nucleic Acids Res ; 34(1): 140-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16407331

RESUMO

5-fluorouracil (5-FU) is a widely used anticancer drug that disrupts pyrimidine nucleotide pool balances and leads to uracil incorporation in DNA, which is then recognized and removed by the uracil base excision repair (BER) pathway. Using complementary biochemical and genetic approaches we have examined the role of uracil BER in the cell killing mechanism of 5-FU. A yeast strain lacking the enzyme uracil DNA glycosylase (Ung1), which excises uracil from the DNA backbone leaving an abasic site, showed significant protection against the toxic effects of 5-FU, a G1/S cell cycle arrest phenotype, and accumulated massive amounts of U/A base pairs in its genome (approximately 4% of T/A pairs were now U/A). A strain lacking the major abasic site endonuclease of Saccharomyces cerevisiae (Apn1) showed significantly increased sensitivity to 5-FU with G2/M arrest. Thus, efficient processing of abasic sites by this enzyme is protective against the toxic effects of 5-FU. However, contrary to expectations, the Apn1 deficient strain did not accumulate intact abasic sites, indicating that another repair pathway attempts to process these sites in the absence Apn1, but that this process has catastrophic effects on genome integrity. These findings suggest that new strategies for chemical intervention targeting BER could enhance the effectiveness of this widely used anticancer drug.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Dano ao DNA , Reparo do DNA , Fluoruracila/toxicidade , Uracila/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Ciclo Celular/efeitos dos fármacos , DNA Fúngico/metabolismo , Fluoruracila/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
5.
J Am Chem Soc ; 127(49): 17412-20, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16332091

RESUMO

Uracil DNA glycosylase (UNG) is an important DNA repair enzyme that recognizes and excises uracil bases in DNA using an extrahelical recognition mechanism. It is emerging as a desirable target for small-molecule inhibitors given its key role in a wide range of biological processes including the generation of antibody diversity, DNA replication in a number of viruses, and the formation of DNA strand breaks during anticancer drug therapy. To accelerate the discovery of inhibitors of UNG we have developed a uracil-directed ligand tethering strategy. In this efficient approach, a uracil aldehyde ligand is tethered via alkyloxyamine linker chemistry to a diverse array of aldehyde binding elements. Thus, the mechanism of extrahelical recognition of the uracil ligand is exploited to target the UNG active site, and alkyloxyamine linker tethering is used to randomly explore peripheral binding pockets. Since no compound purification is required, this approach rapidly identified the first small-molecule inhibitors of human UNG with micromolar to submicromolar binding affinities. In a surprising result, these uracil-based ligands are found not only to bind to the active site but also to bind to a second uncompetitive site. The weaker uncompetitive site suggests the existence of a transient binding site for uracil during the multistep extrahelical recognition mechanism. This very general inhibitor design strategy can be easily adapted to target other enzymes that recognize nucleobases, including other DNA repair enzymes that recognize other types of extrahelical DNA bases.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Uracila-DNA Glicosidase/antagonistas & inibidores , Uracila/metabolismo , Aldeídos/metabolismo , Sítios de Ligação , Humanos , Ligantes , Estrutura Molecular , Oximas/química , Oximas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo
6.
Biochemistry ; 42(43): 12455-60, 2003 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-14580190

RESUMO

The DNA repair enzyme uracil DNA glycosylase has been crystallized with a cationic 1-aza-2'-deoxyribose-containing DNA that mimics the ultimate transition state of the reaction in which the water nucleophile attacks the anomeric center of the oxacarbenium ion-uracil anion reaction intermediate. Comparison with substrate and product structures, and the previous structure of the intermediate determined by kinetic isotope effects, reveals an exquisite example of geometric strain, least atomic motion, and electrophile migration in biological catalysis. This structure provides a rare opportunity to reconstruct the detailed structural transformations that occur along an enzymatic reaction coordinate.


Assuntos
DNA Glicosilases/química , Glucose/química , Cátions , Clonagem Molecular , Cristalização , DNA Glicosilases/genética , DNA Glicosilases/isolamento & purificação , Humanos , Modelos Moleculares , Eletricidade Estática , Uracila-DNA Glicosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA