Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioact Mater ; 26: 14-23, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36875051

RESUMO

An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market. A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone. Osteocytes, which are housed and communicate through the lacuno-canalicular network (LCN), are integral to bone health and remodelling processes. Therefore, it is essential to examine the framework of the LCN in response to implant materials or surface treatments. Biodegradable materials offer an alternative solution to permanent implants, which may require revision or removal surgeries. Magnesium alloys have resurfaced as promising materials due to their bone-like properties and safe degradation in vivo. To further tailor their degradation capabilities, surface treatments such as plasma electrolytic oxidation (PEO) have demonstrated to slow degradation. For the first time, the influence of a biodegradable material on the LCN is investigated by means of non-destructive 3D imaging. In this pilot study, we hypothesize noticeable variations in the LCN caused by altered chemical stimuli introduced by the PEO-coating. Utilising synchrotron-based transmission X-ray microscopy, we have characterised morphological LCN differences around uncoated and PEO-coated WE43 screws implanted into sheep bone. Bone specimens were explanted after 4, 8, and 12 weeks and regions near the implant surface were prepared for imaging. Findings from this investigation indicate that the slower degradation of PEO-coated WE43 induces healthier lacunar shapes within the LCN. However, the stimuli perceived by the uncoated material with higher degradation rates induces a greater connected LCN better prepared for bone disturbance.

2.
Bioact Mater ; 25: 86-94, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36733929

RESUMO

Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites. Previous studies demonstrated radiofrequency (RF) heating of permanent implants caused by electromagnetic fields used in MRI. Our investigation is the first to report the effect of the degradation layer on RF-induced heating of biodegradable orthopaedic implants. WE43 orthopaedic compression screws underwent in vitro degradation. Imaging techniques were applied to assess the corrosion process and the material composition of the degraded screws. Temperature measurements were performed to quantify implant heating with respect to the degradation layer. For comparison, a commercial titanium implant screw was used. Strongest RF induced heating was observed for non-degraded WE43 screw samples. Implant heating had shown to decrease with the formation of the degradation layer. No statistical differences were observed for heating of the non-degraded WE43 material and the titanium equivalent. The highest risk of implant RF heating is most pronounced for Mg-based screws prior to degradation. Amendment to industry standards for MRI safety assessment is warranted to include biodegradable materials.

3.
Bioact Mater ; 15: 382-391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386351

RESUMO

Magnesium (Mg) implants have shown to cause image artefacts or distortions in magnetic resonance imaging (MRI). Yet, there is a lack of information on how the degradation of Mg-based implants influences the image quality of MRI examinations. In this study, Mg-based implants are analysed in vitro, ex vivo, and in the clinical setting for various magnetic field strengths with the aim to quantify metallic artefact behaviour. In vitro corroded Mg-based screws and a titanium (Ti) equivalent were imaged according to the ASTM F2119. Mg-based and Ti pins were also implanted into rat femurs for different time points and scanned to provide insights on the influence of soft and hard tissue on metallic artefact. Additionally, MRI data of patients with scaphoid fractures treated with CE-approved Mg-based compression screws (MAGNEZIX®) were analysed at various time points post-surgery. The artefact production of the Mg-based material decreased as implant material degraded in all settings. The worst-case imaging scenario was determined to be when the imaging plane was selected to be perpendicular to the implant axis. Moreover, the Mg-based implant outperformed the Ti equivalent in all experiments by producing lower metallic artefact (p < 0.05). This investigation demonstrates that Mg-based implants generate significantly lower metallic distortion in MRI when compared to Ti. Our positive findings suggest and support further research into the application of Mg-based implants including post-operative care facilitated by MRI monitoring of degradation kinetics and bone/tissue healing processes.

4.
Nat Commun ; 13(1): 1153, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241673

RESUMO

The study of chemo-mechanical stress taking place in the electrodes of a battery during cycling is of paramount importance to extend the lifetime of the device. This aspect is particularly relevant for all-solid-state batteries where the stress can be transmitted across the device due to the stiff nature of the solid electrolyte. However, stress monitoring generally relies on sensors located outside of the battery, therefore providing information only at device level and failing to detect local changes. Here, we report a method to investigate the chemo-mechanical stress occurring at both positive and negative electrodes and at the electrode/electrolyte interface during battery operation. To such effect, optical fiber Bragg grating sensors were embedded inside coin and Swagelok cells containing either liquid or solid-state electrolyte. The optical signal was monitored during battery cycling, further translated into stress and correlated with the voltage profile. This work proposes an operando technique for stress monitoring with potential use in cell diagnosis and battery design.

5.
Bioact Mater ; 6(12): 4360-4367, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997512

RESUMO

Magnesium-based implants are re-emerging as a substantial amendment to standard orthopaedic implants. A brief introduction of magnesium (Mg) as a biodegradable material and basic magnetic resonance imaging (MRI) principles are discussed. This review aims to highlight the current performance of these implants during examinations with MRI. We also aim to summarise comparisons between Mg-based implants with current standards to emphasise the promotion of biodegradable implants in clinical practice. A comprehensive search of current literature on Mg-based implants and the utilisation of MRI in the studies was performed. Additionally, recorded artefact behaviour of Mg-based implants during MRI was investigated. A total of nine studies were included in which MRI was employed to image Mg-based implants. Of those studies, four of the nine discuss artefact production caused by the implants. MRI successfully imaged regions of interest over all and produced fewer artefacts than other materials used in the studies. MRI was employed in contrast angiography, bone growth observation, bone infection healing, and blood perfusion. Imaging capabilities of an implant material are vital to translating products into clinical application. Positive findings presented in this review suggest and support the use of Mg-based implants due to their successful visual compatibility with MRI techniques.

7.
J Biomed Mater Res B Appl Biomater ; 106(1): 245-258, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28130871

RESUMO

Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0.19-0.27%) were observed. Intergranular corrosion was observed during residence of Zn-Al alloys in the murine aorta, suggesting a different corrosion mechanism than that of pure zinc. This mode of failure needs to be avoided for stent applications because the intergranular corrosion caused cracking and fragmentation of the implants, although the composition of corrosion products was roughly identical between non- and Al-containing materials. In spite of differences in corrosion mechanisms, the cross-sectional reduction of metals in murine aorta was nearly identical at 30-40% and 40-50% after 4.5 and 6 months, respectively, for pure Zn and Zn-Al alloys. Histopathological analysis and evaluation of arterial tissue compatibility around Zn-Al alloys failed to identify areas of necrosis, though both chronic and acute inflammatory indications were present. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 245-258, 2018.


Assuntos
Ligas/química , Alumínio/química , Aorta , Prótese Vascular , Teste de Materiais , Stents , Zinco/química , Animais , Corrosão , Camundongos , Estresse Mecânico
8.
Acta Biomater ; 62: 434-445, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28844965

RESUMO

Biodegradable magnesium alloys are a new class of implant material suitable for bone surgery. The aim of this study was to investigate plates and screws made of magnesium for osteosynthesis in comparison to titanium in a cranial fracture model. Implants were used for internal fixation of a cranio-osteoplasty in nine minipigs. Computed tomography was conducted repeatedly after surgery. The implants and the adjacent tissues were harvested 10, 20 and 30weeks after surgery and investigated by micro-computed tomography and histological analysis. The surgical procedure and the inserted osteosynthesis material were well tolerated by the animals, and the bone healing of the osteoplasty was undisturbed at all times. The adjacent bone showed formation of lacunas in the magnesium group, resulting in a lower bone-to-implant contact ratio than that of titanium (72 vs. 94% at week 30), but this did not lead to clinical side effects. Radiological measurements showed no reduction in osteosynthesis material volume, but indicated signs of degradation: distinct volumes within the magnesium osteosynthesis group had lower density in micro-computed tomography, and these volumes increased up to 9% at week 30. The histological preparations showed areas of translucency and porosity inside the magnesium, but the outer shape of the osteosynthesis material remained unchanged. No fracture or loosening of the osteosynthesis devices appeared. Soft tissue probes confirmed sufficient biocompatibility. Given their biodegradable capacity, biocompatibility, mechanical strength and visibility on radiographs, osteosynthesis plates made of magnesium alloys are suitable for internal fixation procedures. STATEMENT OF SIGNIFICANCE: To the best of our knowledge this is the first study that used biodegradable magnesium implants for osteosynthesis in a cranial fracture model. The cranio-osteoplasty in miniature pigs allowed in vivo application of plate and screw osteosynthesis of standard-sized implants and the implementation of surgical procedures similar to those conducted on human beings. The osteosynthesis configuration, size, and mechanical properties of the magnesium implants within this study were comparable to those of titanium-based osteosynthesis materials. The results clearly show that bone healing was undisturbed in all cases and that the biocompatibility to hard- and soft tissue was sufficient. Magnesium implants might help to avoid long-term complications and secondary removal procedures due to their biodegradable properties.


Assuntos
Implantes Absorvíveis , Ligas , Cementoplastia , Fixação Interna de Fraturas , Magnésio , Teste de Materiais , Crânio , Ligas/química , Ligas/farmacologia , Animais , Cementoplastia/instrumentação , Cementoplastia/métodos , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Magnésio/química , Magnésio/farmacologia , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/metabolismo , Crânio/cirurgia , Suínos , Porco Miniatura
9.
Mater Sci Eng C Mater Biol Appl ; 76: 301-312, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482531

RESUMO

Zinc shows great promise as a bio-degradable metal. Our early in vivo investigations implanting pure zinc wires into the abdominal aorta of Sprague-Dawley rats revealed that metallic zinc does not promote restenotic responses and may suppress the activities of inflammatory and smooth muscle cells. However, the low tensile strength of zinc remains a major concern. A cast billet of the Zn-Li alloy was produced in a vacuum induction caster under argon atmosphere, followed by a wire drawing process. Two phases of the binary alloy identified by x-ray diffraction include the zinc phase and intermetallic LiZn4 phase. Mechanical testing proved that incorporating 0.1wt% of Li into Zn increased its ultimate tensile strength from 116±13MPa (pure Zn) to 274±61MPa while the ductility was held at 17±7%. Implantation of 10mm Zn-Li wire segments into abdominal aorta of rats revealed an excellent biocompatibility of this material in the arterial environment. The biodegradation rate for Zn-Li was found to be about 0.008mm/yr and 0.045mm/yr at 2 and 12months, respectively.


Assuntos
Ligas/química , Aorta Abdominal , Animais , Lítio , Magnésio , Teste de Materiais , Ratos , Ratos Sprague-Dawley , Zinco
10.
J Biomed Mater Res B Appl Biomater ; 105(2): 350-365, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26511430

RESUMO

Despite innovative surgical techniques and use of current frontal sinus stents from different materials, the problem of treatment failure with consecutive reoperation remains present. The aim of our study is to investigate biocompatibility, degradation kinetics, and functionality of a newly developed fluoride-coated magnesium-based nasal stent. A minipig anatomy of frontal sinus adapted design and an external surgical approach were developed and established. The functionality of the stents was evaluated endoscopically. The stent-tissue blocks were analysed after 90 and 180 days using microcomputed tomography (µ-CT), histology, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Functional evaluation revealed an unobstructed stent lumen in all cases. Histological analysis showed moderate mucosal hyperplasia with a mild, nonspecific inflammatory response, and nonosteoconductive effect. Rejection reactions or necrosis did not occur. The volumetric analysis of the stents showed 51% volume loss after 180 days. The EDS analysis did not detect any neodymium (Nd) in the mucosa or bone. The Mg-2 wt % Nd stents are a promising option when treating the narrow passages following paranasal sinus surgery. In particular, its good biocompatibility and good functionality facilitate the re-epithelization of these constricted passages. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 350-365, 2017.


Assuntos
Implantes Absorvíveis , Ligas , Materiais Revestidos Biocompatíveis , Fluoretos , Seio Frontal , Compostos de Magnésio , Stents , Ligas/química , Ligas/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fluoretos/química , Fluoretos/farmacologia , Seio Frontal/metabolismo , Seio Frontal/patologia , Seio Frontal/cirurgia , Magnésio/química , Magnésio/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Neodímio/química , Neodímio/farmacologia , Suínos , Porco Miniatura
11.
J Biomed Mater Res B Appl Biomater ; 105(6): 1622-1635, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153508

RESUMO

Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017.


Assuntos
Materiais Revestidos Biocompatíveis , Implantes Experimentais , Magnésio , Teste de Materiais , Fosfatos , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Feminino , Magnésio/química , Magnésio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatos/química , Fosfatos/farmacologia
12.
J Biomed Mater Res A ; 105(1): 329-347, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596336

RESUMO

The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 329-347, 2017.


Assuntos
Implantes Absorvíveis , Ligas , Magnésio , Ligas/química , Ligas/uso terapêutico , Animais , Humanos , Magnésio/química , Magnésio/uso terapêutico
13.
J Biomed Mater Res A ; 105(3): 697-709, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27770566

RESUMO

Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017.


Assuntos
Implantes Experimentais , Magnésio , Células-Tronco Mesenquimais/metabolismo , Coluna Vertebral/metabolismo , Animais , Linhagem Celular , Corrosão , Feminino , Magnésio/química , Magnésio/farmacocinética , Magnésio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
14.
Am J Surg Pathol ; 41(2): 195-203, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27776010

RESUMO

Infantile myofibroma (MF) is an uncommon benign myofibroblastic tumor of infancy and childhood. Solitary adult MF shares similar features with infantile MF. The lesions occur in 3 clinicopathologic settings: solitary, multicentric, and generalized and can be either sporadic or familial. Traditionally, infantile MF has been included in the spectrum of infantile hemangiopericytoma. The recent World Health Organization classification listed MF, angioleiomyoma, and myopericytoma under the general heading of perivascular tumors in the sense of a morphologic spectrum of perivascular myoid cell neoplasms. Although activating germline PDGFRB mutations have recently been linked to familial infantile MF, the molecular pathogenesis of sporadic infantile and adult solitary MF remained unclear. In this study, we analyzed 25 solitary MFs without evidence of familial disease (9 infantile and 16 adult MFs) to address the question whether somatic PDGFRB mutations might be responsible for the sporadic form of the disease. Given the presumed histogenetic link of MF to myopericytoma and angioleiomyoma, we additionally analyzed a control group of 6 myopericytomas and 9 angioleiomyomas for PDGFRB mutations. We detected PDGFRB mutations in 6/8 (75%) analyzable infantile and in 11/16 (69%) adult MFs but in none of the angioleiomyomas or myopericytomas. In 2 infantile MFs, additional sequencing of the germline confirmed the somatic nature of PDGFRB mutations. To our knowledge, this is the first study reporting apparently somatic recurrent PDGFRB mutations as molecular driver events in the majority of sporadic infantile and adult solitary MFs. Our results suggest molecular distinctness of MF as compared with angioleiomyoma/myopericytoma. Investigation of more cases including those with atypical and worrisome features, as well as other mimickers in the heterogenous morphologic spectrum of MF, is mandatory for validating the potential diagnostic value of PDGFRB mutation testing as a possible surrogate in difficult-to-classify lesions.


Assuntos
Angiomioma/genética , Hemangiopericitoma/genética , Miofibroma/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Neoplasias de Tecidos Moles/genética , Adolescente , Adulto , Idoso , Angiomioma/patologia , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Hemangiopericitoma/patologia , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Miofibroma/patologia , Reação em Cadeia da Polimerase , Neoplasias de Tecidos Moles/patologia , Adulto Jovem
15.
J Biomed Mater Res A ; 104(9): 2149-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27102724

RESUMO

To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016.


Assuntos
Implantes Absorvíveis , Células da Medula Óssea , Transplante de Medula Óssea , Rastreamento de Células/métodos , Aloenxertos , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Modelos Biológicos , Poliestirenos/efeitos adversos , Poliestirenos/farmacologia
16.
Steroids ; 110: 35-40, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27025972

RESUMO

11beta-hydroxysteroid-dehydrogenase type 2 (11ß-HSD2) is a high affinity dehydrogenase which rapidly inactivates physiologically-active glucocorticoids to protect key tissues. 11ß-HSD2 expression has been described in peripheral cells of the innate and the adaptive immune system as well as in murine thymus. In absence of knowledge of 11ß-HSD2 expression in human thymus, the study aimed to localize 11ß-HSD2 in human thymic tissue. Thymic tissue was taken of six healthy, non-immunologically impaired male infants below 12months of age with congenital heart defects who had to undergo correction surgery. 11ß-HSD2 protein expression was analyzed by immunohistochemistry and Western blot. Kidney tissue, peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC) were taken as positive controls. Significant expression of 11ß-HSD2 protein was found at single cell level in thymus parenchyma, at perivascular sites of capillaries and small vessels penetrating the thymus lobuli and within Hassall's bodies. The present study demonstrates that 11ß-HSD2 is expressed in human thymus with predominant perivascular expression and also within Hassall's bodies. To our knowledge, this is the first report confirming 11ß-HSD2 expression at the protein level in human thymic tissue underlining a potential role of this enzyme in regulating glucocorticoid function at the thymic level.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Timo/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Lactente , Rim/metabolismo , Masculino
17.
J Biomed Mater Res A ; 104(6): 1489-99, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26860452

RESUMO

Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016.


Assuntos
Implantes Absorvíveis , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Magnésio/farmacologia , Infecções Relacionadas à Prótese/microbiologia , Animais , Contagem de Colônia Microbiana , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos
18.
Biomed Eng Online ; 14: 92, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481582

RESUMO

BACKGROUND: Magnesium alloys are recommended as a potential material for osteosynthesis. It is known that storage-induced property modifications can occur in materials like aluminum. Thus the aim of this study was to analyze the influence of storage durations of up to 48 weeks on the biomechanical, structural, and degradation properties of the degradable magnesium alloy LAE442. METHODS: Extruded implants (n = 104; Ø 2.5 mm × 25 mm) were investigated after storage periods of 0, 12, 24, and 48 weeks in three different sub-studies: (I) immediately after the respective storage duration and after an additional (II) 56 days of in vitro corrosion in simulated body fluid (SFB), and (III) 48 weeks in vivo corrosion in a rabbit model, respectively. In addition, the influence of a T5-heat treatment (206 °C for 15 h in an argon atmosphere) was tested (n = 26; 0 week of storage). Evaluation was performed by three-point bending, scanning electron microscopy, radiography, µ-computed tomography, evaluation of the mean grain size, and contrast analysis of precipitations (such as aluminum or lithium). RESULTS: The heat treatment induced a significant reduction in initial stability, and enhanced the corrosion resistance. In vivo experiments showed a good biocompatibility for all implants. During the storage of up to 48 weeks, no significant changes occurred in the implant properties. CONCLUSIONS: LAE442 implants can be safely used after up to 48 weeks of storage.


Assuntos
Temperatura Alta , Magnésio/química , Teste de Materiais , Fenômenos Mecânicos , Próteses e Implantes , Ligas/química , Animais , Fenômenos Biomecânicos , Magnésio/farmacologia , Período Pós-Operatório , Coelhos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/cirurgia , Fatores de Tempo , Microtomografia por Raio-X
19.
Mater Sci Eng C Mater Biol Appl ; 56: 467-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249616

RESUMO

Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells.


Assuntos
Implantes Absorvíveis , Aorta Abdominal , Teste de Materiais , Stents , Zinco , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Adv Healthc Mater ; 4(13): 1915-36, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26172399

RESUMO

Sutures that biodegrade and dissolve over a period of several weeks are in great demand to stitch wounds and surgical incisions. These new materials are receiving increased acceptance across surgical procedures whenever permanent sutures and long-term care are not needed. Unfortunately, both inflammatory responses and adverse local tissue reactions in the close-to-stitching environment are often reported for biodegradable polymeric sutures currently used by the medical community. While bioabsorbable metals are predominantly investigated and tested for vascular stent or osteosynthesis applications, they also appear to possess adequate bio-compatibility, mechanical properties, and corrosion stability to replace biodegradable polymeric sutures. In this Review, biodegradable alloys made of iron, magnesium, and zinc are critically evaluated as potential materials for the manufacturing of soft and hard tissue sutures. In the case of soft tissue closing and stitching, these metals have to compete against currently available degradable polymers. In the case of hard tissue closing and stitching, biodegradable sternal wires could replace the permanent sutures made of stainless steel or titanium alloys. This Review discusses the specific materials and degradation properties required by all suture materials, summarizes current suture testing protocols and provides a well-grounded direction for the potential future development of biodegradable metal based sutures.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Suturas , Ligas/metabolismo , Ligas/uso terapêutico , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/uso terapêutico , Humanos , Polímeros/química , Polímeros/metabolismo , Polímeros/uso terapêutico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA