Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breast Cancer (Auckl) ; 18: 11782234241240173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779416

RESUMO

Backgrounds: About 25% to 30% of estrogen receptor (ER)-positive breast cancer patients develop resistance to endocrine therapy. Human epidermal growth factor receptor 2 (HER2) has been shown to cooperate with several growth factors that regulate cellular energy metabolism, including the insulin-like growth factor 1 receptor (IGF-1R). Objective: As the first-line therapy for type 2 diabetes mellitus (T2DM) patients, metformin is widely known to inhibit the metabolic reprogramming of cancer cells. This study aims to investigate metformin's efficacy in inhibiting endocrine resistance related to genes regulating energy metabolism in both ER-positive and ER-negative breast cancer cell lines under hyperglycemic conditions. Design and methods: MDA-MB-361 (ER-positive, HER2-positive) and SKBR3 (ER-negative, HER2-positive) cancer cell lines were used to represent ER status. Cell viability and cell survival rate were measured using the colorimetric assay of Cell Counting Kit-8. All mRNA levels were quantified using real-time quantitative polymerase chain reaction preceded by reverse transcription. A P value of <.05 was considered statistically significant. Results: Unlike MDA-MB-361, SKBR3 were found to acquire resistance upon metformin treatment in hyperglycemic conditions. Moreover, the mRNA expression of IGF-1R and its downstream signaling, such as the mammalian target of rapamycin (mTOR), was not affected by metformin. Meanwhile, the mRNA expression level of ribosomal S6 kinase 1 (S6K1) was upregulated, whereas forkhead box O1 (FOXO1) was downregulated after metformin treatment in hyperglycemic conditions. Conclusions: This preliminary study suggests that an alternative pathway of metformin resistance may exist in the absence of ERα. Therefore, relying solely on metformin may be inadequate to inhibit the aggressiveness of breast cancer cells.


Navigating metformin's impact on breast cancer: insights into resistance, alternative pathways, and the crucial role of estrogen receptor under high-glucose conditions Around 25% to 30% of breast cancer patients with estrogen receptor (ER)-positive tumors become resistant to hormone therapy. This study explores whether metformin, a drug commonly used for type 2 diabetes, can counteract this resistance by affecting genes linked to energy metabolism. The research focused on both ER-positive (MDA-MB-361) and ER-negative (SKBR3) breast cancer cell lines under high-glucose conditions. Results showed that although metformin inhibited the growth of ER-positive cells, it surprisingly promoted resistance in ER-negative cells. The expression of insulin-like growth factor 1 receptor (IGF-1R) and its downstream signals like mammalian target of rapamycin (mTOR) remained unaffected by metformin. However, metformin did alter the expression of other genes related to energy metabolism, suggesting that a different resistance pathway might exist in ER-negative cases. In conclusion, this early study implies that relying solely on metformin might not be sufficient to combat the aggressiveness of breast cancer cells, particularly in cases lacking ERα. More research is needed to understand alternative pathways and develop more effective strategies against resistance.

2.
PLoS One ; 17(4): e0263113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381015

RESUMO

Oxidant species is reported as a major determinant in the pathophysiology of diabetic kidney disease. However, reactive oxygen species (ROS) formation in the initial phase and progressing phase of diabetic kidney disease remains unclear. Therefore, we conducted this study to find out what ROS and their modified product are associated with eGFR in type 2 diabetes mellitus (T2DM) patients. A cross-sectional study was performed on 227 T2DM patients. The study subjects were divided into three groups based on their eGFR stage (Group 1, eGFR > 89 ml/min/1.73 m2; Group 2, eGFR = 60-89 ml/min/1.73 m2; and Group 3, eGFR < 60 ml/min/1.73 m2). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum oxLDL/ß2GPI complex and urinary 8-iso-PGF2α, while ferrous ion oxidation xylenol orange method 1 (FOX-1) was used to measure urinary hydrogen peroxide (H2O2). H2O2 significantly decreased across the groups, whereas OxLDL/ß2GPI complex increased, but not significant, and there was no trend for 8-iso-PGF2α. Consistently, in the total study population, only H2O2 showed correlation with eGFR (r = 0.161, p = 0.015). Multiple linear regression analysis showed that significant factors for increased eGFR were H2O2, diastolic blood pressure, and female. Whereas increased systolic blood pressure and age were significant factors affecting the decrease of eGFR. We also found that urinary H2O2 had correlation with serum oxLDL/ß2GPI complex in total population. This finding could lead to further research on urinary H2O2 for early detection and research on novel therapies of diabetic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Biomarcadores , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Dinoprosta/análogos & derivados , Feminino , Humanos , Peróxido de Hidrogênio , Lipoproteínas LDL , Espécies Reativas de Oxigênio
3.
Diabetes Metab Syndr Obes ; 13: 325-331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104029

RESUMO

INTRODUCTION: Abnormalities in glucose metabolism in diabetic patients may lead to an increased risk of certain cancers. Epidemiological studies and meta-analysis have shown that factors such as gender, age, obesity, and insulin resistance are related to cancer incidence. The anti-p53 antibody is a known cancer marker due to tumor-associated p53 accumulation. Many studies have aimed to unravel the link between diabetes and cancer. Here, we aimed to elucidate the impact of diabetes on malignancies by analyzing anti-p53 antibody in sera of type 2 diabetes mellitus (T2DM) patients. MATERIALS AND METHODS: We conducted an observational study with a cross-sectional design. A total of 149 subjects comprised of 78 T2DM patients (32 with cancer risk and 46 subjects without cancer risk), 51 T2DM patients with cancer, and 20 healthy subjects as controls from multisites. The anti-p53 antibody was measured by enzyme-linked immunosorbent assay, while HbA1c was measured using the NGSP standardized method. RESULTS: We observed an 8.3-fold (p<0.05) increase of anti-p53 antibody in the sera of T2DM patients and a 24-fold increase (p<0.001) in T2DM patients with cancer compared to healthy subjects. The anti-p53 antibodies significantly increased almost three times (p<0.05) in T2DM patients with cancer (0.72 U/mL±0.20) compared to T2DM patients (0.25 U/mL±0.05). Meanwhile, this antibody was almost undetectable in healthy subjects as a control group (0.03 U/mL±0.03). The anti-p53 antibody level was higher in T2DM with cancer risk patients. However, we did not find a significant difference for it in T2DM without cancer risk patients (0.19 U/mL±0.03) and T2DM with cancer risk patients (0.29 U/mL±0.08). Multivariate regression analysis showed that T2DM with cancer was the only one independent factor (beta=0.218, p=0.019) that could predict the increase of anti-p53 antibody, controlled by age, gender, BMI, DM duration, and HbA1c. CONCLUSION: Our results showed that anti-p53 antibody almost not detected in healthy subjects, but 8.3-fold increase in the sera of T2DM patients and 24-fold increase in T2DM patients with cancer. Therefore, this biomarker provides new information which explains the link between diabetes and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA