Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591500

RESUMO

This study developed advanced ceramic materials with both healing and decomposition functions using a metastable product generated under superheated steam. The developed composite material comprises ZrC particles dispersed in a yttria-stabilized zirconia (YSZ) matrix. After introducing a surface crack of approximately 120 µm on the composite specimen, it showed a complete strength recovery rate after one hour of heat treatment under superheated steam at 400 °C, while it exhibited a decomposition behavior after one hour of heat treatment in air at 400 °C. The XRD analysis of the heat-treated specimens showed that the final product was monoclinic ZrO2 under both steam and air conditions. In other words, full strength recovery in superheated steam was achieved by a chain reaction involving metastable intermediate products derived from H2O, unlike the reaction in air.

2.
Materials (Basel) ; 16(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37834505

RESUMO

Controlling the chemical reaction rate concerning degradation and repair is found to be important to design advanced self-healing ceramics. The recovery and degradation behaviors of strength and stiffness were investigated by exposing aqueous solutions of different pH and calcium ion concentrations to the introduced crack on typical self-healing ceramics dispersed with alumina cement as a self-healing agent. The chemical reaction of cement undergoes the following three stages: dissolution of components such as calcium ions, formation of a gel, and formation of final products. Experimental and thermodynamic assessments revealed that even under conditions where the final products are identical (thermodynamic equilibrium), kinetic effects (excessive dissolution of components or insufficient crystal formation) result in strength degradation rather than repair. It was also suggested that the repair function could be enhanced by controlling the nucleation site of the crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA