Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 929, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568648

RESUMO

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Engenharia Genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
2.
Metallomics ; 12(4): 572-591, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149296

RESUMO

Copper (Cu) is an essential, but toxic, micronutrient for living organisms and cells have developed sophisticated response mechanisms towards both the lack and the excess of Cu in their environments. In this study, we achieved a global view of Cu-responsive changes in the prokaryotic model organism Rhodobacter capsulatus using label-free quantitative differential proteomics. Semi-aerobically grown cells under heterotrophic conditions in minimal medium (∼0.3 µM Cu) were compared with cells supplemented with either 5 µM Cu or with 5 mM of the Cu-chelator bathocuproine sulfonate. Mass spectrometry based bottom-up proteomics of unfractionated cell lysates identified 2430 of the 3632 putative proteins encoded by the genome, producing a robust proteome dataset for R. capsulatus. Use of biological and technical replicates for each growth condition yielded high reproducibility and reliable quantification for 1926 of the identified proteins. Comparison of cells grown under Cu-excess or Cu-depleted conditions to those grown under minimal Cu-sufficient conditions revealed that 75 proteins exhibited statistically significant (p < 0.05) abundance changes, ranging from 2- to 300-fold. A subset of the highly Cu-responsive proteins was orthogonally probed using molecular genetics, validating that several of them were indeed involved in cellular Cu homeostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Homeostase , Proteoma/metabolismo , Proteômica/métodos , Rhodobacter capsulatus/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Quelantes/farmacologia , Cromatografia Líquida/métodos , Análise por Conglomerados , Cobre/farmacologia , Meios de Cultura/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Fenantrolinas/farmacologia , Proteoma/classificação , Proteoma/genética , Rhodobacter capsulatus/efeitos dos fármacos , Rhodobacter capsulatus/genética , Espectrometria de Massas em Tandem/métodos
3.
ACS Chem Biol ; 13(5): 1388-1397, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29613755

RESUMO

PccA and SenC are periplasmic copper chaperones required for the biogenesis of cbb3-type cytochrome c oxidase ( cbb3-Cox) in Rhodobacter capsulatus at physiological Cu concentrations. However, both proteins are dispensable for cbb3-Cox assembly when the external Cu concentration is high. PccA and SenC bind Cu using Met and His residues and Cys and His residues as ligands, respectively, and both proteins form a complex during cbb3-Cox biogenesis. SenC also interacts directly with cbb3-Cox, as shown by chemical cross-linking. Here we determined the periplasmic concentrations of both proteins in vivo and analyzed their Cu binding stoichiometries and their Cu(I) and Cu(II) binding affinity constants ( KD) in vitro. Our data show that both proteins bind a single Cu atom with high affinity. In vitro Cu transfer assays demonstrate Cu transfer both from PccA to SenC and from SenC to PccA at similar levels. We conclude that PccA and SenC constitute a Cu relay system that facilitates Cu delivery to cbb3-Cox.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/metabolismo , Transporte de Íons , Oxirredução
4.
FEBS Lett ; 592(6): 901-915, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427514

RESUMO

Combining peroxidase activity-based heme staining (TMBZ/SDS/PAGE) with mass spectrometry analyses (Nano LC-MS/MS) of protein extracts from wild-type and appropriate mutants, we provide evidence that the polychlorinated biphenyl degrader Pseudomonas pseudoalcaligenes KF707 primarily expresses a caa3 -type cytochrome c oxidase (caa3 -Cox) using cytochrome (cyt) c4 as an electron donor in cells grown with biphenyl versus glucose as the sole carbon source. Homology modeling of KF707 caa3 -Cox using the three-dimensional structure of that from Thermus thermophilus highlights multiple similarities and differences between the proton channels in subunit I of the aa3 - and caa3 -Cox of Paracoccus and Thermus spp., respectively. To our knowledge, this is the first report demonstrating the presence of a caa3 -Cox using cyt c4 as an electron donor in a Pseudomonas species.


Assuntos
Proteínas de Bactérias/biossíntese , Compostos de Bifenilo/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Pseudomonas pseudoalcaligenes/enzimologia , Proteínas de Bactérias/genética , Compostos de Bifenilo/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Pseudomonas pseudoalcaligenes/genética
5.
J Biol Chem ; 292(32): 13154-13167, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28634234

RESUMO

In many Gram-negative bacteria, including Rhodobacter capsulatus, cytochrome c maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome c heme-binding site (CXXCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation. Currently, the sequence of thioredox reactions occurring between these components and apocytochrome c and the identity of their active Cys residues are unknown. In this work, we first investigated protein-protein interactions among the apocytochrome c, CcmG, and the heme-ligation components CcmF, CcmH, and CcmI. We found that they all interact with each other, forming a CcmFGHI-apocytochrome c complex. Using purified wild-type CcmG, CcmH, and apocytochrome c, as well as their respective Cys mutant variants, we determined the rates of thiol-disulfide exchange reactions between selected pairs of Cys residues from these proteins. We established that CcmG can efficiently reduce the disulfide bond of apocytochrome c and also resolve a mixed disulfide bond formed between apocytochrome c and CcmH. We further show that Cys-45 of CcmH and Cys-34 of apocytochrome c are most likely to form this mixed disulfide bond, which is consistent with the stereo-specificity of the heme-apocytochrome c ligation reaction. We conclude that CcmG confers efficiency, and CcmH ensures stereo-specificity during Ccm and present a comprehensive model for thioreduction reactions that lead to heme-apocytochrome c ligation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Modelos Biológicos , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Rhodobacter capsulatus/enzimologia , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Citocromos c/química , Heme/metabolismo , Mutação , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/química , Proteína Dissulfeto Redutase (Glutationa)/genética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo
6.
Dev Cell ; 41(2): 204-220.e5, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28441533

RESUMO

The Arabidopsis thaliana root epidermis is comprised of two cell types, hair and nonhair cells, which differentiate from the same precursor. Although the transcriptional programs regulating these events are well studied, post-transcriptional factors functioning in this cell fate decision are mostly unknown. Here, we globally identify RNA-protein interactions and RNA secondary structure in hair and nonhair cell nuclei. This analysis reveals distinct structural and protein binding patterns across both transcriptomes, allowing identification of differential RNA binding protein (RBP) recognition sites. Using these sequences, we identify two RBPs that regulate hair cell development. Specifically, we find that SERRATE functions in a microRNA-dependent manner to inhibit hair cell fate, while also terminating growth of root hairs mostly independent of microRNA biogenesis. In addition, we show that GLYCINE-RICH PROTEIN 8 promotes hair cell fate while alleviating phosphate starvation stress. In total, this global analysis reveals post-transcriptional regulators of plant root epidermal cell fate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/citologia , RNA/metabolismo , Núcleo Celular/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
7.
Mol Cell ; 57(2): 376-88, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25557549

RESUMO

Posttranscriptional regulation in eukaryotes requires cis- and trans-acting features and factors including RNA secondary structure and RNA-binding proteins (RBPs). However, a comprehensive view of the structural and RBP interaction landscape of nuclear RNAs has yet to be compiled for any organism. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approaches to globally profile these features in Arabidopsis seedling nuclei in vivo. We reveal anticorrelated patterns of secondary structure and RBP binding throughout nuclear mRNAs that demarcate sites of alternative splicing and polyadenylation. We also uncover a collection of protein-bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts encoding functionally related proteins, and interactions with putative RBPs. Finally, using these motifs, we find that the chloroplast RBP CP29A also interacts with nuclear mRNAs. In total, we provide a simultaneous view of the RNA secondary structure and RBP interaction landscapes in a eukaryotic nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Ribonucleoproteínas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Regulação da Expressão Gênica de Plantas , Conformação de Ácido Nucleico , Ligação Proteica , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Transcriptoma
8.
Biochemistry ; 52(41): 7196-206, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24028549

RESUMO

The ubihydroquinone:cytochrome c oxidoreductase, or cytochrome bc1, is a central component of respiratory and photosynthetic energy transduction pathways in many organisms. It contributes to the generation of membrane potential and proton gradient used for cellular energy (ATP) production. The three-dimensional structures of cytochrome bc1 show a homodimeric organization of its three catalytic subunits. The unusual architecture revived the issue of whether the monomers operate independently or function cooperatively during the catalytic cycle of the enzyme. In recent years, different genetic approaches allowed the successful production of heterodimeric cytochrome bc1 variants and evidenced the occurrence of intermonomer electron transfer between the monomers of this enzyme. Here we used a version of the "two-plasmid" genetic system, also described in the preceding paper (DOI: 10.1021/bi400560p), to study a new heterodimeric mutant variant of cytochrome bc1. The strain producing this heterodimeric variant sustained photosynthetic growth of Rhodobacter capsulatus and yielded an active heterodimer. Interestingly, kinetic data showed equilibration of electrons among the four b heme cofactors of the heterodimer, via "reverse" intermonomer electron transfer between the bL hemes. Both inactive homodimeric and active heterodimeric cytochrome bc1 variants were purified to homogeneity from the same cells, and purified samples were subjected to mass spectrometry analyses. The data unequivocally supported the idea that the cytochrome b subunits carried the expected mutations and their associated epitope tags. Implications of these findings on our interpretation of light-activated transient cytochrome b and c redox kinetics and the mechanism of function of a dimeric cytochrome bc1 are discussed with respect to the previously proposed heterodimeric Q cycle model.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dimerização , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Modelos Moleculares , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
9.
Biochim Biophys Acta ; 1827(11-12): 1332-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23542447

RESUMO

In this mini review, we briefly survey the molecular processes that lead to reactive oxygen species (ROS) production by the respiratory complex III (CIII or cytochrome bc1). In particular, we discuss the "forward" and "reverse" electron transfer pathways that lead to superoxide generation at the quinol oxidation (Qo) site of CIII, and the components that affect these reactions. We then describe and compare the properties of a bacterial (Rhodobacter capsulatus) mutant enzyme producing ROS with its mitochondrial (human cybrids) counterpart associated with a disease. The mutation under study is located at a highly conserved tyrosine residue of cytochrome b (Y302C in R. capsulatus and Y278C in human mitochondria) that is at the heart of the quinol oxidation (Qo) site of CIII. Similarities of the major findings of bacterial and human mitochondrial cases, including decreased catalytic activity of CIII, enhanced ROS production and ensuing cellular responses and damages, are remarkable. This case illustrates the usefulness of undertaking parallel and complementary studies using biologically different yet evolutionarily related systems, such as α-proteobacteria and human mitochondria. It progresses our understanding of CIII mechanism of function and ROS production, and underlines the possible importance of supra-molecular organization of bacterial and mitochondrial respiratory chains (i.e., respirasomes) and their potential disease-associated protective roles. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , Superóxidos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
10.
Hum Mol Genet ; 22(11): 2141-51, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418307

RESUMO

Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating that it originated from the respiratory electron transport chain. The p.278Y>C mutation enhanced superoxide production, as indicated by direct measurements in mitochondria and by the imbalance of glutathione homeostasis in intact cybrids. Remarkably, although the assembly of CI or CIII was not affected, the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.


Assuntos
Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mutação , Superóxidos/metabolismo , Trifosfato de Adenosina/biossíntese , Linhagem Celular , DNA Mitocondrial/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético , Ativação Enzimática , Glutationa/metabolismo , Homeostase/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo
11.
J Biol Chem ; 286(20): 18139-48, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454570

RESUMO

Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.


Assuntos
Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Rhodobacter capsulatus/enzimologia , Tirosina/metabolismo , Substituição de Aminoácidos , Citocromos b/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Plasmodium/enzimologia , Plasmodium/genética , Rhodobacter capsulatus/genética , Tirosina/genética
12.
Proc Natl Acad Sci U S A ; 108(2): 810-5, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187377

RESUMO

Bacterial pathogens have evolved sophisticated signal transduction systems to coordinately control the expression of virulence determinants. For example, the human pathogen Vibrio cholerae is able to respond to host environmental signals by activating transcriptional regulatory cascades. The host signals that stimulate V. cholerae virulence gene expression, however, are still poorly understood. Previous proteomic studies indicated that the ambient oxygen concentration plays a role in V. cholerae virulence gene expression. In this study, we found that under oxygen-limiting conditions, an environment similar to the intestines, V. cholerae virulence genes are highly expressed. We show that anaerobiosis enhances dimerization and activity of AphB, a transcriptional activator that is required for the expression of the key virulence regulator TcpP, which leads to the activation of virulence factor production. We further show that one of the three cysteine residues in AphB, C(235), is critical for oxygen responsiveness, as the AphB(C235S) mutant can activate virulence genes under aerobic conditions in vivo and can bind to tcpP promoters in the absence of reducing agents in vitro. Mass spectrometry analysis suggests that under aerobic conditions, AphB is modified at the C(235) residue. This modification is reversible between oxygen-rich aquatic environments and oxygen-limited human hosts, suggesting that V. cholerae may use a thiol-based switch mechanism to sense intestinal signals and activate virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Compostos de Sulfidrila/química , Transativadores/metabolismo , Vibrio cholerae/genética , Anaerobiose , Cisteína/genética , Perfilação da Expressão Gênica , Mutação , Oxigênio/química , Regiões Promotoras Genéticas , Proteômica , Transcrição Gênica , Ativação Transcricional , Vibrio cholerae/patogenicidade , Virulência
13.
Mitochondrion ; 11(2): 342-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21147271

RESUMO

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by GAA triplet expansions or point mutations in the FXN gene on chromosome 9q13. The gene product called frataxin, a mitochondrial protein that is severely reduced in FRDA patients, leads to mitochondrial iron accumulation, Fe-S cluster deficiency and oxidative damage. The tissue specificity of this mitochondrial disease is complex and poorly understood. While frataxin is ubiquitously expressed, the cellular phenotype is most severe in neurons and cardiomyocytes. Here, we conducted comprehensive proteomic, metabolic and functional studies to determine whether subclinical abnormalities exist in mitochondria of blood cells from FRDA patients. Frataxin protein levels were significantly decreased in platelets and peripheral blood mononuclear cells from FRDA patients. Furthermore, the most significant differences associated with frataxin deficiency in FRDA blood cell mitochondria were the decrease of two mitochondrial heat shock proteins. We did not observe profound changes in frataxin-targeted mitochondrial proteins or mitochondrial functions or an increase of apoptosis in peripheral blood cells, suggesting that functional defects in these mitochondria are not readily apparent under resting conditions in these cells.


Assuntos
Ataxia de Friedreich/sangue , Proteínas de Ligação ao Ferro/genética , Mitocôndrias/fisiologia , Adulto , Western Blotting , Estudos de Casos e Controles , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Masculino , Espectrometria de Massas , Frataxina
14.
Adv Exp Med Biol ; 675: 179-209, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20532742

RESUMO

A first glimpse into the proteome of Rhodobacter capsulatus revealed more than 450 (with over 210 cytoplasmic and 185 extracytoplasmic known as well as 55 unknown) proteins that are identified with high degree of confidence using nLC-MS/MS analyses. The accumulated data provide a solid platform for ongoing efforts to establish the proteome of this species and the cellular locations of its constituents. They also indicate that at least 40 of the identified proteins, which were annotated in genome databases as unknown hypothetical proteins, correspond to predicted translation products that are indeed present in cells under the growth conditions used in this work. In addition, matching the identification labels of the proteins reported between the two available R. capsulatus genome databases (ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx numbers) indicated that 11 such proteins are listed only in the latter database.


Assuntos
Proteínas de Bactérias/metabolismo , Fotossíntese , Proteoma/análise , Rhodobacter sphaeroides/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA