Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(5): 102584, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924591

RESUMO

Commercial hatch cabinet environments promote replication of microorganisms. These pathogenic or apathogenic microorganisms may serve as pioneer colonizers of the gastrointestinal tract (GIT) of poultry. Some of these pioneer colonizers, such as Escherichia coli and Enterococcus spp., are opportunistic pathogens that lead to reduced performance in commercial poultry. Effective hatchery sanitation is imperative to limit contamination of naïve neonatal chicks and poults. Formaldehyde fumigation has been traditionally used to reduce the pathogen load in commercial hatch cabinets. To investigate potential alternatives to formaldehyde fumigation, models to mimic the microbial bloom in a laboratory setting must be utilized. The purpose of the present study was to evaluate the impact of a multispecies environmental challenge model (PM challenge) with and without formaldehyde fumigation during the hatching phase on early performance in broiler chicks. Three experiments were conducted to evaluate microbial contamination in the hatch cabinet environment (air samples, fluff samples), enteric colonization at day-of-hatch (DOH), and 7-day performance. In all experiments, significantly (P < 0.05) more gram-negative bacteria were recovered from the GIT at DOH in the PM challenge control group as compared to the nonchallenged control (NC) group and the formaldehyde-treated group (PM + F). There were no statistical differences in 7-day body weight gain or feed conversion ratio between the PM challenge control group, the NC group or the PM + F group. These data suggest this model could be utilized to evaluate alternatives to formaldehyde fumigation for controlling the microbial load during the hatching phase in a laboratory setting.


Assuntos
Galinhas , Fumigação , Animais , Galinhas/microbiologia , Perus , Formaldeído , Escherichia coli
2.
Poult Sci ; 101(6): 101890, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35512499

RESUMO

Microbial blooms that emerge in commercial hatch cabinets consist of apathogenic and pathogenic microorganisms, including Escherichia coli, Enterococcus faecalis, and Aspergillus fumigatus. Objectives of the present study included the development of a multipathogen contamination model to mimic commercial conditions and optimization of sampling methods to quantify bacterial or fungal presence within the hatch cabinet. The pathogen challenge mix (PM) was recreated from select bacterial or fungal isolates recovered from an egg homogenate (EH) derived from the contents of infertile eggs and late embryonic mortalities. Isolates selected for PM included Enterococcus faecalis (∼108 CFU/egg), Staphylococcus aureus (∼107 CFU/egg), Staphylococcus chromogenes (∼107 CFU/egg), Aspergillus fumigatus (∼106 spores/egg), and 2 Escherichia coli (∼108 CFU/egg) isolates. Challenge (100 µL of PM or EH) was administered using a sterile loop to a 28 mm area on the blunt end of the eggshell at day 19 of embryogenesis (DOE). In 3 experiments, microbiological data were collected from environmental hatcher samples (open-agar plate method), fluff samples, postmortem whole-body chick rinse samples, and gastrointestinal tract (GIT) samples to evaluate select bacteria and fungi circulating within the hatch cabinet and colonization of GIT. Cumulative bacterial and fungal recovery from the PM hatching environment from DOE20 to hatch was higher than the nonchallenged group (NC) and EH group at ∼860 and ∼1,730 CFU, respectively. Bacterial recovery from GIT, fluff, and chick rinse samples were similar for the PM and EH group in Exp. 1. However, Aspergillus fumigatus recovery from fluff and chick rinse samples for the PM group was significantly (P < 0.001) higher than the NC and EH group. In Exp. 2 and 3, PM challenge significantly (P < 0.05) increased Gram-negative bacterial recovery from the GIT, fluff and chick rinse samples compared to both the NC and EH group. These data suggest this innovative multispecies environmental contamination model using PM could be utilized to evaluate strategies to mitigate microbial contamination in commercial hatch cabinets in a laboratory setting.


Assuntos
Galinhas , Óvulo , Animais , Bactérias , Casca de Ovo/microbiologia , Escherichia coli
3.
Poult Sci ; 100(3): 100975, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33518327

RESUMO

Horizontal transmission of opportunistic Escherichia coli during hatch can have detrimental effects on early performance, particularly as pioneer colonizers. Commercially, formaldehyde is often applied in the United States to combat the bacterial bloom that occurs inside of the hatching environment. The purpose of these experiments was to develop a replicable E. coli horizontal challenge model to evaluate alternatives to formaldehyde sanitation applied to the hatching environment. In experiment 1, two trials were conducted for 2 wild-type (WT) E. coli isolates (isolate 1 [I1] or isolate 2 [I2]) to determine the appropriate in ovo challenge dose and day of embryogenesis (DOE) for challenge administration. In experiment 1 trial 1, the most appropriate inoculation dose and time point were determined to be 102 cfu/embryo on DOE 19. Experiment 1 trial 2 evaluated whether placement of seeder (direct-challenged) embryos with contact (indirect-challenged) embryos during hatch affected contact hatchability. Trial 2 showed no differences in hatchability between groups. A 7-day experiment (experiment 1 trial 2) was conducted to evaluate the effects of I1 or I2 on horizontal transmission, gram-negative bacterial (GNB) recovery from the gastrointestinal tract (GIT), and impact on BW gain (BWG). Compared with the negative control, seeder, and contact chicks challenged with I1 or I2, we observed increased (P < 0.05) GNB recovered from GIT on the day of hatch. There was a marked (P < 0.05) reduction in 7-day BWG between the I1 indirect-challenged group and the negative control group. To further validate the model, 2 7-day trials (experiment 2, experiment 3) were conducted to evaluate the effects of formaldehyde fumigation on coliform recovery from the hatching environment and on early performance using I1 for the challenge. Isolate 1 positive control hatchers had increased levels of circulating coliforms compared with the negative control and formaldehyde-treated hatchers, although there was no significant impact on performance induced by challenge or formaldehyde treatment in experiment 2 or experiment 3. These data provide a potential model for investigations related to horizontal transmission of WT E. coli at a low dose on DOE 19 to promote simulated commercially relevant bacterial blooms under laboratory conditions.


Assuntos
Galinhas , Desinfecção , Escherichia coli , Óvulo , Animais , Desinfecção/métodos , Escherichia coli/fisiologia , Formaldeído , Fumigação , Modelos Biológicos , Óvulo/microbiologia
4.
Poult Sci ; 100(4): 100988, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33610893

RESUMO

Avian pathogenic Escherichia coli (E. coli) is an opportunistic pathogen often introduced to neonatal chicks during the hatching process. This commensal bacterium, particularly as a pioneer colonizer of the gastrointestinal tract, can have substantial implications in the rearing of poultry because of reduced flock performance. In order to mimic the effects of the natural bacterial bloom present during the hatch, a seeder challenge model was developed to expose neonatal chicks to virulent E. coli. On day 20 of embryogenesis, selected early hatched chicks (n = 18/hatcher) were briefly removed and sprayed challenged with saline (vehicle) or E. coli at 1 × 107 colony-forming unit (CFU)/chick (exp 1) and 2.5 × 107 CFU/chick (exp 2). These challenged chicks were returned to the hatcher to serve as seeders to transmit the pathogen to the indirect challenged or contact chicks (n = 195/hatcher). For two 7-d experiments, the efficacy of transmission was evaluated via enteric bacterial recovery, body weight gain (BWG), and mortality. For exp 1 and exp 2, significantly (P < 0.0001) more gram-negative bacteria were recovered from the seeder and contact gastrointestinal samples than the negative control samples on day of hatch. In addition, there was a reduction (P < 0.05) in 7-d BWG and significantly (P < 0.0001) higher mortality in the contact-challenged chicks than the negative control chicks in both exp 1 and exp 2. These data suggest that this challenge model could be used to evaluate different methods of controlling the bacterial bloom that occurs in the hatching environment.


Assuntos
Infecções Bacterianas , Galinhas , Modelos Animais de Doenças , Doenças das Aves Domésticas , Animais , Animais Recém-Nascidos/microbiologia , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Infecções Bacterianas/transmissão , Infecções Bacterianas/veterinária , Escherichia coli/fisiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão
5.
Poult Sci ; 98(12): 6483-6491, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549175

RESUMO

This study evaluated the effect of in ovo Bacillus spp. base probiotic (BBP) administration on hatchability, Gram-negative bacteria (GNB) recovery, performance, and microbiota composition in 2 independent trials using a virulent E. coli seeder challenge model. In each trial, one hundred and eighty 18-day-old embryos were allocated into 1 of 2 groups: Control and treated group (inoculated with 107 BBP). On day 19 of embryogenesis, seeder embryos (n = 18) were inoculated with 4.5 × 104E. coli/mL+272 µg/mL tetracycline and segregated into mesh hatching bags. Twelve chicks per group were euthanized at hatch and at day 7 to evaluate the gastrointestinal composition of total GNB or total aerobic pasteurized bacteria. Also, in trial 2, ceca content from five chickens at day 7 were collected to evaluate microbiota composition. Embryos inoculated with BBP showed a significant (P < 0.05) reduction in the total number of GNB at day-of-hatch (DOH) and day 7. Probiotic treatment increased BW at DOH and day 7, and BW gain (days 0 to 7) when compared with Control chickens. Proteobacteria phylum was significantly reduced, while the Firmicutes was significantly increased by the BBP as compared to the Control (P < 0.05). At family level, Enterobacteriaceae was significantly decreased, while the Lachnospiraceae was significantly elevated in the BBP as compared to the Control group (P < 0.05). The genus Oscillospira was significantly enriched in the BBP group, whereas the unidentified genus of family Enterobacteriaceae in the Control group (P < 0.05). The BBP group increased the bacterial species richness, although there was no significant difference between treatments (P > 0.05). Interestingly, beta diversity showed a significant difference in bacterial community structure between Control and BBP groups (P < 0.05). The results of the present study suggest that in ovo administration of a BBP can reduce the severity of virulent E. coli horizontal transmission and infection of broiler chickens during hatch. The reduction in the severity of the transmission and infection by the BPP might be achieved through alterations of microbiota composition and its community structure.


Assuntos
Bacillus/química , Galinhas , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Óvulo/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Probióticos/farmacologia , Animais , Animais Recém-Nascidos , Transmissão de Doença Infecciosa , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Probióticos/administração & dosagem , Virulência
6.
Poult Sci ; 98(11): 5330-5335, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31289817

RESUMO

During the hatching process, chicks are exposed to opportunistic and/or pathogenic organisms, such as virulent or avirulent Escherichia coli. Virulent E. coli strains have not been feasible for induction of neonatal colibacillosis via in ovo challenge due to high embryonic mortality. In this manuscript, we describe the addition and co-administration of the bacteriostatic antibiotic tetracycline to a virulent E. coli challenge culture, improving hatchability and livability of seeder chicks while allowing robust horizontal transmission in the hatching cabinet to contact chicks. Experiment 1 consisted of 3 trials. Experiment 1, trial 1 was conducted to determine an effective ratio of E. coli challenge and tetracycline dose to be utilized in the seeder model. Trials 2 and 3 were conducted to evaluate the transmission of E. coli from seeder to contact chicks. Experiment 2 consisted of 3 independent 7-D trials where body weight gain (BWG), mortality, and selected enteric bacterial recovery were evaluated. In trials 1 to 3, significantly (P < 0.05) more Gram-negative bacteria were recovered from whole gut samples (GIT) vs. negative controls on day of hatch, from both seeder and contact chicks. At day 7 in trial 1, contact chicks had significantly (P < 0.05) more Gram-negative bacteria recovered from the GIT than the negative control, but not in trials 2 and 3. Presumptive lactic acid bacterial recovery was elevated in contact and seeder chicks compared to the negative control in all 3 trials. Contact challenge caused a significant (P < 0.05) reduction in BWG in 2 out of 3 trials at day 7, and there was a significant (P < 0.05) increase in mortality as compared to the negative controls in all trials. These data suggest that co-administration of a virulent E. coli strain with tetracycline allows for hatch of direct challenged chicks and effective horizontal transmission to contact chicks during the hatching process, as evidenced by reduced day 7 performance and altered selected enteric bacterial recovery.


Assuntos
Antibacterianos/administração & dosagem , Galinhas , Modelos Animais de Doenças , Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/imunologia , Tetraciclina/administração & dosagem , Animais , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Óvulo , Doenças das Aves Domésticas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA