RESUMO
Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.
Assuntos
Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes , COVID-19 , Doenças Genéticas Inatas , Interferon-alfa , Receptor de Interferon alfa e beta , SARS-CoV-2 , Vacina contra Febre Amarela , Vírus da Febre Amarela , Adolescente , Adulto , Idoso , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , COVID-19/genética , COVID-19/imunologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Células HEK293 , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Masculino , Pessoa de Meia-Idade , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/genética , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologiaRESUMO
Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.
Assuntos
Padrões de Herança/genética , Vacina contra Sarampo/efeitos adversos , Receptor de Interferon alfa e beta/deficiência , Vacina contra Febre Amarela/efeitos adversos , Adolescente , Alelos , Criança , Feminino , Humanos , Imunidade , Lactente , Interferon Tipo I/metabolismo , Masculino , Vacina contra Sarampo/imunologia , Proteínas Mutantes/metabolismo , Mutação/genética , Linhagem , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Vacina contra Febre Amarela/imunologiaRESUMO
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting "near real-time" prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators.
Assuntos
Imunização , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Sistemas de Notificação de Reações Adversas a Medicamentos , Animais , Seguimentos , Humanos , Imunização/efeitos adversos , Esquemas de Imunização , Imunogenicidade da Vacina , Vigilância da População , Guias de Prática Clínica como Assunto , Sistema de Registros , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversosRESUMO
Isolates of tick-borne encephalitis virus (TBEV) from arthropod vectors (ticks and mosquitoes) in the Amur, the Jewish Autonomous and the Sakhalin regions as well as on the Khabarovsk territory of the Far East of Russia were studied. Different proportions of four main tick species of the family Ixodidae: Ixodes persulcatus P. Schulze, 1930; Haemaphysalis concinna Koch, 1844; Haemaphysalis japonica douglasi Nuttall et Warburton, 1915 and Dermacentor silvarum Olenev, 1932 were found in forests and near settlements. RT-PCR of TBEV RNA in adult ticks collected from vegetation in 1999-2014 revealed average infection rates of 7.9⯱â¯0.7% in I. persulcatus, of 5.6⯱â¯1.0% in H. concinna, of 2.0⯱â¯2.0% in H. japonica, and of 1.3⯱â¯1.3% in D. silvarum. Viral loads varied in a range from 102 to 109 TBEV genome-equivalents per a tick with the maximal values in I. persulcatus and H. japonica. Molecular typing using reverse transcription with subsequent real time PCR with subtype-specific fluorescent probes demonstrated that the Far Eastern (FE) subtype of TBEV predominated both in mono-infections and in mixed infection with the Siberian (Sib) subtype in I. persulcatus pools. TBEV strains of the FE subtype were isolated from I. persulcatus, H. concinna and from a pool of Aedes vexans mosquitoes. Ten TBEV strains isolated from I. persulcatus from the Khabarovsk territory and the Jewish Autonomous region between 1985 and 2013 cluster with the TBEV vaccine strain Sofjin of the FE subtype isolated from human brain in 1937. A TBEV strain from H. concinna collected in the Amur region (GenBank accession number KF880803) is similar to the vaccine strain 205 isolated in 1973 from I. persulcatus collected in the Jewish Autonomous region. The TBEV strain Lazo MP36 of the FE subtype isolated from a pool of A. vexans in the Khabarovsk territory in 2014 (KT001073) differs from strains isolated from 1) I. persulcatus (including the vaccine strain 205) and H. concinna; 2) mosquitoes [strain Malishevo (KJ744034) isolated in 1978 from Aedes vexans nipponii in the Khabarovsk territory]; and 3) human brain (including the vaccine strain Sofjin). Accordingly, in the far eastern natural foci, TBEV of the prevailing FE subtype has remained stable since 1937. Both Russian vaccines against TBE based on the FE strains (Sofjin and 205) are similar to the new viral isolates and might protect against infection.
Assuntos
Aedes/virologia , Vetores Artrópodes/virologia , Dermacentor/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/epidemiologia , Ixodidae/virologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Florestas , Genoma Viral , Ixodes/virologia , Tipagem Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Federação RussaAssuntos
Fibrilação Atrial , Varfarina , Anticoagulantes , Benzimidazóis , Ablação por Cateter , Dabigatrana , Humanos , Resultado do Tratamento , beta-AlaninaRESUMO
The unexpected emergence of Zika virus (ZIKV) in the Pacific Islands and Latin America and its association with congenital Zika virus syndrome (CZVS) (which includes microcephaly) and Guillain-Barré syndrome (GBS) have stimulated wide-ranging research. High densities of susceptible Aedes spp., immunologically naive human populations, global population growth with increased urbanization, and escalation of global transportation of humans and commercial goods carrying vectors and ZIKV undoubtedly enhanced the emergence of ZIKV. However, flavivirus mutations accumulate with time, increasing the likelihood that genetic viral differences are determinants of change in viral phenotype. Based on comparative ZIKV complete genome phylogenetic analyses and temporal estimates, we identify amino acid substitutions that may be associated with increased viral epidemicity, CZVS, and GBS. Reverse genetics, vector competence, and seroepidemiological studies will test our hypothesis that these amino acid substitutions are determinants of epidemic and neurotropic ZIKV emergence.
Assuntos
Evolução Molecular , Infecção por Zika virus/epidemiologia , Zika virus/isolamento & purificação , Aedes/crescimento & desenvolvimento , Aedes/virologia , Substituição de Aminoácidos , Animais , Humanos , América Latina/epidemiologia , Mutação , Ilhas do Pacífico/epidemiologia , Virulência , Zika virus/classificação , Zika virus/genéticaRESUMO
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viral and other microbial pathogens in their genome (so-called "chimeric virus vaccines"). Many such viral vector vaccines are now at various stages of clinical evaluation. Here, we introduce an attenuated form of recombinant vesicular stomatitis virus (rVSV) as a potential chimeric virus vaccine for HIV-1, with implications for use as a vaccine vector for other pathogens. The rVSV/HIV-1 vaccine vector was attenuated by combining two major genome modifications. These modifications acted synergistically to greatly enhance vector attenuation and the resulting rVSV vector demonstrated safety in sensitive mouse and non-human primate neurovirulence models. This vector expressing HIV-1 gag protein has completed evaluation in two Phase I clinical trials. In one trial the rVSV/HIV-1 vector was administered in a homologous two-dose regimen, and in a second trial with pDNA in a heterologous prime boost regimen. No serious adverse events were reported nor was vector detected in blood, urine or saliva post vaccination in either trial. Gag specific immune responses were induced in both trials with highest frequency T cell responses detected in the prime boost regimen. The rVSV/HIV-1 vector also demonstrated safety in an ongoing Phase I trial in HIV-1 positive participants. Additionally, clinical trial material has been produced with the rVSV vector expressing HIV-1 env, and Phase I clinical evaluation will initiate in the beginning of 2016. In this paper, we use a standardized template describing key characteristics of the novel rVSV vaccine vectors, in comparison to wild type VSV. The template facilitates scientific discourse among key stakeholders by increasing transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
Assuntos
Vacinas contra a AIDS/efeitos adversos , Vacinas contra a AIDS/imunologia , Portadores de Fármacos , Vesiculovirus/genética , Vacinas contra a AIDS/genética , Animais , Ensaios Clínicos Fase I como Assunto , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Vetores Genéticos , Humanos , Primatas , Medição de Risco , Linfócitos T/imunologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologiaRESUMO
UNLABELLED: The persistence of tick-borne encephalitis virus (TBEV) in nature is maintained by numerous species of reservoir hosts, multiple transmissions between vertebrates and invertebrates, and the virus adaptation to its hosts. Our Aim: was to compare TBEV isolates from ticks and small wild mammals to estimate their roles in the circulation of the viral subtypes. METHODS: TBEV isolates from two species of ixodid ticks, four species of rodents, and one species of shrews in the Novosibirsk region, South-Western Siberia, Russia, were analyzed using bioassay, hemagglutination, hemagglutination inhibition, neutralization tests, ELISA, reverse transcription with real-time PCR, and phylogenetic analysis. RESULTS: TBEV RNA and/or protein E were found in 70.9% ± 3.0% of mammals and in 3.8% ± 0.4% of ticks. The TBEV infection rate, main subtypes, and neurovirulence were similar between ixodid tick species. However, the proportions of the virus that were pathogenic for laboratory mice and of the Far-Eastern (FE) subtype, as well as the viral loads with the Siberian and the European subtypes for the TBEV in Ixodes pavlovskyi Pomerantsev, 1946 were higher than in Ixodes persulcatus (P. Schulze, 1930). Percentages of infected Myodes rutilus, Sicista betulina, and Sorex araneus exceeded those of Apodemus agrarius and Myodes rufocanus. Larvae and nymphs of ticks were found mainly on rodents, especially on Myodes rufocanus and S. betulina. The proportion of TBEV-mixed infections with different subtypes in the infected ticks (55.9% ± 6.5%) was higher than in small mammals (36.1% ± 4.0%) (p < 0.01). CONCLUSIONS: Molecular typing revealed mono- or mixed infection with three main subtypes of TBEV in ticks and small mammals. The Siberian subtype was more common in ixodid ticks, and the FE subtype was more common in small mammals (p < 0.001). TBEV isolates of the European subtype were rare. TBEV infection among different species of small mammals did not correlate with their infestation rate with ticks in the Novosibirsk region, Russia.
Assuntos
Reservatórios de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/genética , Ixodidae/microbiologia , Mamíferos/microbiologia , Animais , Animais Recém-Nascidos , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Camundongos , Camundongos Endogâmicos ICR , Filogenia , Sibéria , VirulênciaRESUMO
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus-vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains.
Assuntos
Portadores de Fármacos , Vetores Genéticos , Recombinação Genética , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Animais , Humanos , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Virulência , VírusRESUMO
Vaccines are one of the most effective public health medicinal products with an excellent safety record. As vaccines are produced using biological materials, there is a need to safeguard against potential contamination with adventitious agents. Adventitious agents could be inadvertently introduced into a vaccine through starting materials used for production. Therefore, extensive testing has been recommended at specific stages of vaccine manufacture to demonstrate the absence of adventitious agents. Additionally, the incorporation of viral clearance steps in the manufacturing process can aid in reducing the risk of adventitious agent contamination. However, for live viral vaccines, aside from possible purification of the virus or vector, extensive adventitious agent clearance may not be feasible. In the event that an adventitious agent is detected in a vaccine, it is important to determine its origin, evaluate its potential for human infection and pathology, and discern which batches of vaccine may have been affected in order to take risk mitigation action. To achieve this, it is necessary to have archived samples of the vaccine and ancillary components, ideally from developmental through to current batches, as well as samples of the biological materials used in the manufacture of the vaccine, since these are the most likely sources of an adventitious agent. The need for formal guidance on such vaccine sample archiving has been recognized but not fulfilled. We summarize in this paper several prior major cases of vaccine contamination with adventitious agents and provide points for consideration on sample archiving of live recombinant viral vector vaccines for use in humans.
Assuntos
Contaminação de Medicamentos , Preservação Biológica , Tecnologia Farmacêutica , Vacinas Virais/isolamento & purificação , Cultura de Vírus , Animais , Humanos , Vacinas Atenuadas/isolamento & purificaçãoRESUMO
Recognition that the live yellow fever vaccine may rarely be associated with viscerotropic disease (YEL-AVD) has diminished its safety status. However, the vaccine remains the principal tool for limiting the occurrence of yellow fever, making large portions of Africa and South America more habitable. The subject has previously been exhaustively reviewed. Novel concepts in the current report include the description of a systematic method for deciding whom to vaccinate, recommendations for obtaining data helpful in making that decision, and suggestions for additional study. The vaccine is indeed a worthy friend, but its adverse reactions need to be recognized.
Assuntos
Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , África , Humanos , América do Sul , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/administração & dosagemRESUMO
Recombinant viral vectors provide an effective means for heterologous antigen expression in vivo and thus represent promising platforms for developing novel vaccines against human pathogens from Ebola to tuberculosis. An increasing number of candidate viral vector vaccines are entering human clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to improve our ability to anticipate potential safety issues and meaningfully assess or interpret safety data, thereby facilitating greater public acceptance when licensed.
Assuntos
Portadores de Fármacos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Vetores Genéticos , Cooperação Internacional , Vacinas Virais/efeitos adversos , Ensaios Clínicos como Assunto , Humanos , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.
Assuntos
Portadores de Fármacos , Vetores Genéticos , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Vírus da Febre Amarela/genética , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genéticaRESUMO
Can genetic and clinical findings made in a single patient be considered sufficient to establish a causal relationship between genotype and phenotype? We report that up to 49 of the 232 monogenic etiologies (21%) of human primary immunodeficiencies (PIDs) were initially reported in single patients. The ability to incriminate single-gene inborn errors in immunodeficient patients results from the relative ease in validating the disease-causing role of the genotype by in-depth mechanistic studies demonstrating the structural and functional consequences of the mutations using blood samples. The candidate genotype can be causally connected to a clinical phenotype using cellular (leukocytes) or molecular (plasma) substrates. The recent advent of next generation sequencing (NGS), with whole exome and whole genome sequencing, induced pluripotent stem cell (iPSC) technology, and gene editing technologies-including in particular the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology-offer new and exciting possibilities for the genetic exploration of single patients not only in hematology and immunology but also in other fields. We propose three criteria for deciding if the clinical and experimental data suffice to establish a causal relationship based on only one case. The patient's candidate genotype must not occur in individuals without the clinical phenotype. Experimental studies must indicate that the genetic variant impairs, destroys, or alters the expression or function of the gene product (or two genetic variants for compound heterozygosity). The causal relationship between the candidate genotype and the clinical phenotype must be confirmed via a relevant cellular phenotype, or by default via a relevant animal phenotype. When supported by satisfaction of rigorous criteria, the report of single patient-based discovery of Mendelian disorders should be encouraged, as it can provide the first step in the understanding of a group of human diseases, thereby revealing crucial pathways underlying physiological and pathological processes.
Assuntos
Pesquisa em Genética , Síndromes de Imunodeficiência/genética , Estudos de Associação Genética , Pesquisa em Genética/legislação & jurisprudência , Testes Genéticos , Guias como Assunto , Humanos , Síndromes de Imunodeficiência/diagnósticoRESUMO
Although previously considered as the safest of the live virus vaccines, reports published since 2001 indicate that live yellow fever virus vaccine can cause a severe, often fatal, multisystemic illness, yellow fever vaccine-associated viscerotropic disease (YEL-AVD), that resembles the disease it was designed to prevent. This review was prompted by the availability of a listing of the cumulative cases of YEL-AVD, insights from a statistical method for analyzing risk factors and re-evaluation of previously published data. The purpose of this review is to identify and analyze risk groups based on gender, age, outcome and predisposing illnesses. Using a passive surveillance system in the US, the incidence was reported as 0.3 to 0.4 cases per 100,000. However, other estimates range from 0 to 12 per 100,000. Identified and potential risk groups for YEL-AVD include elderly males, women between the ages of 19 and 34, people with a variety of autoimmune diseases, individuals who have been thymectomized because of thymoma, and infants and children ≤11 years old. All but the last group are supported by statistical analysis. The confirmed risk groups account for 77% (49/64) of known cases and 76% (32/42) of the deaths. The overall case fatality rate is 66% (42/64) with a rate of 80% (12/15) in young women, in contrast to 50% (13/26) in men ≥56 years old. Recognition of YEL-AVD raises the possibility that similar reactions to live chimeric flavivirus vaccines that contain a yellow fever virus vaccine backbone could occur in susceptible individuals. Delineation of risk groups focuses the search for genetic mutations resulting in immune defects associated with a given risk group. Lastly, identification of risk groups encourages concentration on measures to decrease both the incidence and the severity of YEL-AVD.
Assuntos
Vacina contra Febre Amarela/efeitos adversos , Adulto , Sistemas de Notificação de Reações Adversas a Medicamentos , Doenças Autoimunes/complicações , Criança , Pré-Escolar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Timo/fisiopatologia , Adulto JovemAssuntos
Eritema Migrans Crônico/imunologia , Interleucina-23/sangue , Feminino , Humanos , MasculinoRESUMO
Several risk groups are known for the rare but serious, frequently fatal, viscerotropic reactions following live yellow fever virus vaccine (YEL-AVD). Establishing additional risk groups is hampered by ignorance of the numbers of vaccinees in factor-specific risk groups thus preventing their use as denominators in odds ratios (ORs). Here, we use an equation to calculate ORs using the prevalence of the factor-specific risk group in the population who remain well. The 95% confidence limits and P values can also be calculated. Moreover, if the estimate of the prevalence is imprecise, discrimination analysis can indicate the prevalence at which the confidence interval results in an OR of â¼1 revealing if the prevalence might be higher without yielding a non-significant result. These methods confirm some potential risk groups for YEL-AVD and cast doubt on another. They should prove useful in situations in which factor-specific risk group denominator data are not available.