Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(26): 3153-3165, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37130030

RESUMO

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos , Linfócitos T , Linfoma/etiologia , Antígenos CD19
2.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747791

RESUMO

Chimeric antigen receptor (CAR) engineered T cells often fail to enact effector functions after infusion into patients. Understanding the biological pathways that lead CAR T cells to failure is of critical importance in the design of more effective therapies. We developed and validated an in vitro model that drives T cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains contribute to T cell failure. We found that dysfunctional CD28-based CARs targeting CD19 bear hallmarks of classical T cell exhaustion while dysfunctional 41BB-based CARs are phenotypically, transcriptionally and epigenetically distinct. We confirmed activation of this unique transcriptional program in CAR T cells that failed to control clinical disease. Further, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is a significant contributor to this dysfunction and disruption of FOXO3 improves CAR T cell function. These findings identify that chronic activation of 41BB leads to novel state of T cell dysfunction that can be alleviated by genetic modification of FOXO3. Summary: Chronic stimulation of CARs containing the 41BB costimulatory domain leads to a novel state of T cell dysfunction that is distinct from T cell exhaustion.

3.
STAR Protoc ; 4(1): 101954, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36607811

RESUMO

Several pre-clinical models reveal that chronic chimeric antigen receptor (CAR) stimulation drives a dysfunctional state that mimics in vivo failure. In this protocol, we describe steps to induce T cell dysfunction by persistent and long-term stimulation of CAR-engineered T cells using antigen-expressing cancer cells in suspension cultures. We first described a validated method for manufacturing of CAR T cells, followed by a detailed method for chronic stimulation of CAR T cells and a strategy to evaluate these cells during the process of chronic stimulation. For complete details on the use and execution of this protocol, please refer to Singh et al. (2020).1.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Testes Imunológicos , Neoplasias/terapia
5.
Nat Commun ; 13(1): 3367, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690611

RESUMO

While chimeric antigen receptor (CAR) T cells targeting CD19 can cure a subset of patients with B cell malignancies, most patients treated will not achieve durable remission. Identification of the mechanisms leading to failure is essential to broadening the efficacy of this promising platform. Several studies have demonstrated that disruption of CD19 genes and transcripts can lead to disease relapse after initial response; however, few other tumor-intrinsic drivers of CAR T cell failure have been reported. Here we identify expression of the Golgi-resident intramembrane protease Signal peptide peptidase-like 3 (SPPL3) in malignant B cells as a potent regulator of resistance to CAR therapy. Loss of SPPL3 results in hyperglycosylation of CD19, an alteration that directly inhibits CAR T cell effector function and suppresses anti-tumor cytotoxicity. Alternatively, over-expression of SPPL3 drives loss of CD19 protein, also enabling resistance. In this pre-clinical model these findings identify post-translational modification of CD19 as a mechanism of antigen escape from CAR T cell therapy.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Antígenos CD19/metabolismo , Linfócitos B , Glicosilação , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA