Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979333

RESUMO

Dedicated water channels are involved in the facilitated diffusion of water molecules across the cell membrane in plants. Transporter proteins are also known to transport water molecules along with substrates, however the molecular mechanism of water permeation is not well understood in plant transporters. Here, we show plant sugar transporters from the SWEET (Sugar Will Eventually be Exported Transporter) family act as water-conducting carrier proteins via a variety of passive and active mechanisms that allow diffusion of water molecules from one side of the membrane to the other. This study provides a molecular perspective on how plant membrane transporters act as water carrier proteins, a topic that has not been extensively explored in literature. Water permeation in membrane transporters could occur via four distinct mechanisms which form our hypothesis for water transport in SWEETs. These hypothesis are tested using molecular dynamics simulations of the outward-facing, occluded, and inward-facing state of AtSWEET1 to identify the water permeation pathways and the flux associated with them. The hydrophobic gates at the center of the transport tunnel act as a barrier that restricts water permeation. We have performed in silico single and double mutations of the hydrophobic gate residues to examine the changes in the water conductivity. Surprisingly, the double mutant allows the water permeation to the intracellular half of the membrane and forms a continuous water channel. These computational results are validated by experimentally examining the transport of hydrogen peroxide molecules by the AtSWEET family of transporters. We have also shown that the transport of hydrogen peroxide follows the similar mechanism as water transport in AtSWEET1. Finally, we conclude that similar water-conduction states are also present in other SWEET transporters due to the high sequence and structure conservation exhibited by this transporter family.

3.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746282

RESUMO

The PepT So transporter mediates the transport of peptides across biological membranes. Despite advancements in structural biology, including cryogenic electron microscopy structures resolving PepT So in different states, the molecular basis of peptide recognition and transport by PepT So is not fully elucidated. In this study, we employed molecular dynamics simulations, Markov State Models (MSMs), and Transition Path Theory (TPT) to investigate the transport mechanism of an alanine-alanine peptide (Ala-Ala) through the PepT So transporter. Our simulations revealed conformational changes and key intermediate states involved in peptide translocation. We observed that the presence of the Ala-Ala peptide substrate lowers the free energy barriers associated with transition to the inward-facing state. Furthermore, we elucidated the proton transport model and analyzed the pharmacophore features of intermediate states, providing insights for rational drug design. These findings highlight the significance of substrate binding in modulating the conformational dynamics of PepT So and identify critical residues that facilitate transport.

4.
J Biol Chem ; 300(5): 107252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569936

RESUMO

Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Modelos Moleculares , Proteínas de Plantas , Proteínas RGS , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Proteínas RGS/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Relação Estrutura-Atividade , Selaginellaceae/genética , Selaginellaceae/metabolismo , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA