Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30507501

RESUMO

In the original publication of this paper [1], equation (3) contained sign errors for the amplitude of the third and fourth Heaviside functions. The corrected equation is shown in the following: [Formula: see text].

2.
Ultrasound Med Biol ; 44(8): 1573-1584, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29754702

RESUMO

Chronic kidney disease is most desirably and cost-effectively treated by renal transplantation, but graft survival is a major challenge. Although irreversible graft damage can be averted by timely treatment, intervention is delayed when early graft dysfunction goes undetected by standard clinical metrics. A more sensitive and specific parameter for delineating graft health could be the viscoelastic properties of the renal parenchyma, which are interrogated non-invasively by Viscoelastic Response (VisR) ultrasound, a new acoustic radiation force (ARF)-based imaging method. Assessing the performance of VisR imaging in delineating histologically confirmed renal transplant pathologies in vivo is the purpose of the study described here. VisR imaging was performed in patients with (n = 19) and without (n = 25) clinical indication for renal allograft biopsy. The median values of VisR outcome metrics (τ, relative elasticity [RE] and relative viscosity [RV]) were calculated in five regions of interest that were manually delineated in the parenchyma (outer, center and inner) and in the pelvis (outer and inner). The ratios of a given VisR metric for all possible region-of-interest combinations were calculated, and the corresponding ratios were statistically compared between biopsied patients subdivided by diagnostic categories versus non-biopsied, control allografts using the two-sample Wilcoxon test (p <0.05). Although τ ratios non-specifically differentiated allografts with vascular disease, tubular/interstitial scarring, chronic allograft nephropathy and glomerulonephritis from non-biopsied control allografts, RE distinguished only allografts with vascular disease and tubular/interstitial scarring, and RV distinguished only vascular disease. These results suggest that allografts with scarring and vascular disease can be identified using non-invasive VisR RE and RV metrics.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Transplante de Rim , Rim/diagnóstico por imagem , Complicações Pós-Operatórias/diagnóstico por imagem , Adulto , Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Viscosidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-27046848

RESUMO

Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.


Assuntos
Módulo de Elasticidade , Ultrassonografia , Viscosidade , Acústica , Humanos , Fenômenos Mecânicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-24297015

RESUMO

Viscoelastic response (VisR) imaging is presented as a new acoustic radiation force (ARF)-based elastographic imaging method. Exploiting the Voigt model, VisR imaging estimates displacement in only the ARF region of excitation from one or two successive ARF impulses to estimate τσ, the relaxation time for constant stress. Double-push VisR τσ estimates were not statistically significantly different (p < 0.02) from those of shearwave dispersion ultrasound vibrometry (SDUV) or monitored steady-state excitation recovery (MSSER) ultrasound in six homogeneous viscoelastic tissue mimicking phantoms with elastic moduli ranging from 3.92 to 15.34 kPa and coefficients of viscosity ranging from 0.87 to 14.06 Pa·s. In two-dimensional imaging, double-push VisR τσ images discriminated a viscous spherical inclusion in a structured phantom with higher CNR over a larger axial range than single-push VisR or conventional acoustic radiation force impulse (ARFI) ultrasound. Finally, 2-D in vivo double-push VisR images in normal canine semitendinosus muscle were compared with spatially matched histochemistry to corroborate lower double-push VisR τσ values in highly collagenated connective tissue than in muscle, suggesting double-push VisR's in vivo relevance to diagnostic imaging, particularly in muscle. The key advantages and disadvantages to VisR, including lack of compensation for inertial terms, are discussed.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Cães , Modelos Teóricos , Músculos/diagnóstico por imagem , Músculos/fisiologia , Imagens de Fantasmas , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA