Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065371

RESUMO

Epoxy resins were reinforced with different ZnO nanofillers (commercial ZnO nanoparticles (ZnO NPs), recycled ZnO and functionalized ZnO NPs) in order to obtain ZnO-epoxy composites with suitable mechanical properties, high adhesion strength, and good resistance to corrosion. The final properties of ZnO-epoxy composites depend on several factors, such as the type and contents of nanofillers, the epoxy resin type, curing agent, and preparation methods. This paper aims to review the preparation methods, mechanical and anti-corrosion performance, and applications of ZnO-epoxy composites. The epoxy-ZnO composites are demonstrated to be valuable materials for a wide range of applications, including the development of anti-corrosion and UV-protective coatings, for adhesives and the chemical industry, or for use in building materials or electronics.

2.
Biomimetics (Basel) ; 9(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534874

RESUMO

The proposed strategy for the extrusion of printable composite filaments follows the favourable association of biogenic hydroxyapatite (HA) and graphene nanoplatelets (GNP) as reinforcement materials for a poly(lactic acid) (PLA) matrix. HA particles were chosen in the <40 µm range, while GNP were selected in the micrometric range. During the melt-mixing incorporation into the PLA matrix, both reinforcement ratios were simultaneously modulated for the first time at different increments. Cylindrical composite pellets/test samples were obtained only for the mechanical and wettability behaviour evaluation. The Fourier-transformed infrared spectroscopy depicted two levels of overlapping structures due to the solid molecular bond between all materials. Scanning electron microscopy and surface wettability and mechanical evaluations vouched for the (1) uniform/homogenous dispersion/embedding of HA particles up to the highest HA/GNP ratio, (2) physical adhesion at the HA-PLA interface due to the HA particles' porosity, (3) HA-GNP bonding, and (4) PLA-GNP synergy based on GNP complete exfoliation and dispersion into the matrix.

3.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447861

RESUMO

At present, IoT and intelligent applications are developed on a large scale. However, these types of new applications require stable wireless connectivity with sensors, based on several standards of communication, such as ZigBee, LoRA, nRF, Bluetooth, or cellular (LTE, 5G, etc.). The continuous expansion of these networks and services also comes with the requirement of a stable level of service, which makes the task of maintenance operators more difficult. Therefore, in this research, an integrated solution for the management of preventive maintenance is proposed, employing software-defined sensing for hardware components, applications, and client satisfaction. A specific algorithm for monitoring the levels of services was developed, and an integrated instrument to assist the management of preventive maintenance was proposed, which are based on the network of future states prediction. A case study was also investigated for smart city applications to verify the expandability and flexibility of the approach. The purpose of this research is to improve the efficiency and response time of the preventive maintenance, helping to rapidly recover the required levels of service, thus increasing the resilience of complex systems.


Assuntos
Algoritmos , Software , Humanos , Comunicação , Inteligência , Satisfação do Paciente
4.
Bioengineering (Basel) ; 10(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237614

RESUMO

Traumatic brain injury is a leading cause of death and disability worldwide, with nearly 90% of the deaths coming from low- and middle-income countries. Severe cases of brain injury often require a craniectomy, succeeded by cranioplasty surgery to restore the integrity of the skull for both cerebral protection and cosmetic purposes. The current paper proposes a study on developing and implementing an integrative surgery management system for cranial reconstructions using bespoke implants as an accessible and cost-effective solution. Bespoke cranial implants were designed for three patients and subsequent cranioplasties were performed. Overall dimensional accuracy was evaluated on all three axes and surface roughness was measured with a minimum value of 2.209 µm for Ra on the convex and concave surfaces of the 3D-printed prototype implants. Improvements in patient compliance and quality of life were reported in postoperative evaluations of all patients involved in the study. No complications were registered from both short-term and long-term monitoring. Material and processing costs were lower compared to a metal 3D-printed implants through the usage of readily available tools and materials, such as standardized and regulated bone cement materials, for the manufacturing of the final bespoke cranial implants. Intraoperative times were reduced through the pre-planning management stages, leading to a better implant fit and overall patient satisfaction.

5.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903753

RESUMO

Cancer remains the most devastating disease, being one of the main factors of death and morbidity worldwide since ancient times. Although early diagnosis and treatment represent the correct approach in the fight against cancer, traditional therapies, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have some limitations (lack of specificity, cytotoxicity, and multidrug resistance). These limitations represent a continuous challenge for determining optimal therapies for the diagnosis and treatment of cancer. Cancer diagnosis and treatment have seen significant achievements with the advent of nanotechnology and a wide range of nanoparticles. Due to their special advantages, such as low toxicity, high stability, good permeability, biocompatibility, improved retention effect, and precise targeting, nanoparticles with sizes ranging from 1 nm to 100 nm have been successfully used in cancer diagnosis and treatment by solving the limitations of conventional cancer treatment, but also overcoming multidrug resistance. Additionally, choosing the best cancer diagnosis, treatment, and management is extremely important. The use of nanotechnology and magnetic nanoparticles (MNPs) represents an effective alternative in the simultaneous diagnosis and treatment of cancer using nano-theranostic particles that facilitate early-stage detection and selective destruction of cancer cells. The specific properties, such as the control of the dimensions and the specific surface through the judicious choice of synthesis methods, and the possibility of targeting the target organ by applying an internal magnetic field, make these nanoparticles effective alternatives for the diagnosis and treatment of cancer. This review discusses the use of MNPs in cancer diagnosis and treatment and provides future perspectives in the field.

6.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839982

RESUMO

Two types of mesoporous materials, MCM-41 and MCM-48, were functionalized by the soft-template method using (3-aminopropyl)triethoxysilane (APTES) as a modifying agent. The obtained mesoporous silica materials were loaded with trans-ferulic acid (FA). In order to establish the morphology and structure of mesoporous materials, a series of specific techniques were used such as: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). We monitored the in vitro release of the loaded FA at two different pH values, by using simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Additionally, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were used to evaluate the antimicrobial activity of FA loaded mesoporous silica materials. In conclusion such functionalized mesoporous materials can be employed as controlled release systems for polyphenols extracted from natural sources.

7.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501642

RESUMO

Doxorubicin (DOX) is one of the most commonly used drugs in liver cancer. Unfortunately, the traditional chemotherapy with DOX presents many limitations, such as a systematic release of DOX, affecting both tumor tissue and healthy tissue, leading to the apparition of many side effects, multidrug resistance (MDR), and poor water solubility. Furthermore, drug delivery systems' responsiveness has been intensively studied according to the influence of different internal and external stimuli on the efficiency of therapeutic drugs. In this review, we discuss both internal stimuli-responsive drug-delivery systems, such as redox, pH and temperature variation, and external stimuli-responsive drug-delivery systems, such as the application of magnetic, photo-thermal, and electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy, along with the future perspectives of these smart delivery systems in liver cancer therapy.

8.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363159

RESUMO

Geopolymers have been intensively explored over the past several decades and considered as green materials and may be synthesised from natural sources and wastes. Global attention has been generated by the use of kaolin and calcined kaolin in the production of ceramics, green cement, and concrete for the construction industry and composite materials. The previous findings on ceramic geopolymer mix design and factors affecting their suitability as green ceramics are reviewed. It has been found that kaolin offers significant benefit for ceramic geopolymer applications, including excellent chemical resistance, good mechanical properties, and good thermal properties that allow it to sinter at a low temperature, 200 °C. The review showed that ceramic geopolymers can be made from kaolin with a low calcination temperature that have similar properties to those made from high calcined temperature. However, the choice of alkali activator and chemical composition should be carefully investigated, especially under normal curing conditions, 27 °C. A comprehensive review of the properties of kaolin ceramic geopolymers is also presented, including compressive strength, chemical composition, morphological, and phase analysis. This review also highlights recent findings on the range of sintering temperature in the ceramic geopolymer field which should be performed between 600 °C and 1200 °C. A brief understanding of kaolin geopolymers with a few types of reinforcement towards property enhancement were covered. To improve toughness, the role of zirconia was highlighted. The addition of zirconia between 10% and 40% in geopolymer materials promises better properties and the mechanism reaction is presented. Findings from the review should be used to identify potential strategies that could develop the performance of the kaolin ceramic geopolymers industry in the electronics industry, cement, and biomedical materials.

9.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013671

RESUMO

The welding process of dissimilar metals, with distinct chemical, physical, thermal, and structural properties, needs to be studied and treated with special attention. The main objectives of this research were to investigate the weldability of the dissimilar joint made between the 99.95% Cu pipe and the 304L stainless steel plate by robotic Gas Tungsten Arc Welding (GTAW), without filler metal and without preheating of materials, and to find the optimum welding regime. Based on repeated adjustments of the main process parameters-welding speed, oscillation frequency, pulse frequency, main welding current, pulse current, and decrease time of welding current at the process end-it was determined the optimum process and, further, it was possible to carry out joints free of cracks and porosity, with full penetration, proper compactness, and sealing properties, that ensure safety in operating conditions. The microstructure analysis revealed the fusion zone as a multi-element alloy with preponderant participation of Cu that has resulted from mixing the non-ferrous elements and iron. Globular Cu- or Fe-rich compounds were developed during welding, being detected by Scanning Electron Microscope (SEM). Moreover, the Energy Dispersive X-ray Analysis (EDAX) recorded the existence of a narrow double mixing zone formed at the interface between the fusion zone and the 304L stainless steel that contains about 66 wt.% Fe, 18 wt.% Cr, 8 wt.% Cu, and 4 wt.% Ni. Due to the formation of Fe-, Cr-, and Ni-rich compounds, a hardness increase up to 127 HV0.2 was noticed in the fusion zone, in comparison with the copper material, where the average measured microhardness was 82 HV0.2. The optimization of the robotic welding regime was carried out sequentially, by adjusting the parameters values, and, further, by analyzing the effects of welding on the geometry and on the appearance of the weld bead. Finally, employing the optimum welding regime-14 cm/min welding speed, 125 A main current, 100 A pulse current, 2.84 Hz oscillation frequency, and 5 Hz pulse frequency-appropriate dissimilar joints, without imperfections, were achieved.

10.
Materials (Basel) ; 15(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591621

RESUMO

An alloy YPbSn10 used for antifriction applications was synthetized in a furnace and the structure was improved by a microalloying technique. The elements chosen for microalloying were Ca 2%wt and Mg 2%wt. The microalloying technique proved to have good results in producing alloys with homogeneous composition, with a good distribution of the hard phase. The alloys were produced in a furnace and samples were collected and investigated. The structural properties were investigated using an SEM technique with EDS analyses and XRD to identify the compounds formed during alloying. The tribological properties were investigated to see the improvement obtained in this area. The results revealed a homogeneous composition for both samples, alloyed with Ca or with Mg, and the friction coefficient was reduced after the microalloying with almost 20%.

11.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630870

RESUMO

This paper aimed to develop two types of support materials with a mesoporous structure of mobile crystalline matter (known in the literature as MCM, namely MCM-41 and MCM-48) and to load them with gallic acid. Soft templating methodology was chosen for the preparation of the mesoporous structures-the cylindrical micelles with certain structural characteristics being formed due to the hydrophilic and hydrophobic intermolecular forces which occur between the molecules of the surfactants (cetyltrimethylammonium bromide-CTAB) when a minimal micellar ionic concentration is reached. These mesoporous supports were loaded with gallic acid using three different types of MCM-gallic acid ratios (1:0.41; 1:0.82 and 1:1.21)-and their characterizations by FTIR, SEM, XRD, BET and drug release were performed. It is worth mentioning that the loading was carried out using a vacuum-assisted methodology: the mesoporous materials are firstly kept under vacuum at ~0.1 barr for 30 min followed by the addition of the polyphenol solutions. The concentration of the solutions was adapted such that the final volume covered the wet mesoporous support and-in this case-upon reaching normal atmospheric pressure, the solution was pushed inside the pores, and thus the polyphenols were mainly loaded inside the pores. Based on the SBET data, it can be seen that the specific surface area decreased considerably with the increasing ratio of gallic acid; the specific surface area decreased 3.07 and 4.25 times for MCM-41 and MCM-48, respectively. The sample with the highest polyphenol content was further evaluated from a biological point of view, alone or in association with amoxicillin administration. As expected, the MCM-41 and MCM-48 were not protective against infections-but, due to the loading of the gallic acid, a potentiated inhibition was recorded for the tested gram-negative bacterial strains. Moreover, it is important to mention that these systems can be efficient solutions for the recovery of the gut microbiota after exposure to antibiotics, for instance.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35206187

RESUMO

The purpose of this research is to explore barriers and challenges that HEIs in Romania must overcome in order to incorporate education for sustainable development (ESD), but also to provide key recommendations regarding factors that can facilitate sustainability in higher education in Romania. In terms of the approach, a qualitative approach was used consisting of semi-structured interviews involving seven actors from Romanian HEIs, actors who are in charge of ESD adoption. All respondents were in charge of ESD adoption within the Romanian universities that were part of the analysis. The research outlined that the analyzed Romanian universities have implemented ESD, but in terms of planning and practices, they have taken isolated actions. Moreover, major barriers and challenges have been highlighted, such as: funding deficiencies, a lack of experienced officers to adopt SD, change difficulties and improper public policies. The originality of the article resides in the fact the approach is holistic, which adds value to the literature in the area, particularly since, so far, research on ESD in Romanian higher education has focused only on particular factors.


Assuntos
Política Pública , Desenvolvimento Sustentável , Romênia , Universidades
13.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770537

RESUMO

Evoked and spontaneous K-complexes are thought to be involved in sleep protection, but their role as biomarkers is still under debate. K-complexes have two major functions: first, they suppress cortical arousal in response to stimuli that the sleeping brain evaluates to avoid signaling danger; and second, they help strengthen memory. K-complexes also play an important role in the analysis of sleep quality, in the detection of diseases associated with sleep disorders, and as biomarkers for the detection of Alzheimer's and Parkinson's diseases. Detecting K-complexes is relatively difficult, as reliable methods of identifying this complex cannot be found in the literature. In this paper, we propose a new method for the automatic detection of K-complexes combining the method of recursion and reallocation of the Cohen class and the deep neural networks, obtaining a recursive strategy aimed at increasing the percentage of classification and reducing the computation time required to detect K-complexes by applying the proposed methods.


Assuntos
Eletroencefalografia , Fases do Sono , Nível de Alerta , Redes Neurais de Computação , Sono
14.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833276

RESUMO

This study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated. In addition, for the Gd (III) separating process, a gadolinium nitrate solution, with applications of moderator poison in nuclear reactors, was used. The membranes retention performance has been demonstrated by inductively coupled plasma mass spectrometry (ICP-MS), showing a separation efficiency of up to 91%, compared with the initial feed solution.

15.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260938

RESUMO

A novel strategy to improve the success of soft and hard tissue integration of titanium implants is the use of nanoparticles coatings made from basically any type of biocompatible substance, which can advantageously enhance the properties of the material, as compared to its similar bulk material. So, most of the physical methods approaches involve the compaction of nanoparticles versus micron-level particles to yield surfaces with nanoscale grain boundaries, simultaneously preserving the chemistry of the surface among different topographies. At the same time, nanoparticles have been known as one of the most effective antibacterial agents and can be used as effective growth inhibitors of various microorganisms as an alternative to antibiotics. In this paper, based on literature research, we present a comprehensive review of the mechanical, physical, and chemical methods for creating nano-structured titanium surfaces along with the main nanoparticles used for the surface modification of titanium implants, the fabrication methods, their main features, and the purpose of use. We also present two patented solutions which involve nanoparticles to be used in cranioplasty, i.e., a cranial endoprosthesis with a sliding system to repair the traumatic defects of the skull, and a cranial implant based on titanium mesh with osteointegrating structures and functional nanoparticles. The main outcomes of the patented solutions are: (a) a novel geometry of the implant that allow both flexible adaptation of the implant to the specific anatomy of the patient and the promotion of regeneration of the bone tissue; (b) porous structure and favorable geometry for the absorption of impregnated active substances and cells proliferation; (c) the new implant model fit 100% on the structure of the cranial defect without inducing mechanical stress; (d) allows all kinds of radiological examinations and rapid osteointegration, along with the patient recover in a shorter time.

16.
Sensors (Basel) ; 20(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872231

RESUMO

The purpose of this paper is to investigate the possibility of developing and using an intelligent, flexible, and reliable acoustic system, designed to discover, locate, and transmit the position of unmanned aerial vehicles (UAVs). Such an application is very useful for monitoring sensitive areas and land territories subject to privacy. The software functional components of the proposed detection and location algorithm were developed employing acoustic signal analysis and concurrent neural networks (CoNNs). An analysis of the detection and tracking performance for remotely piloted aircraft systems (RPASs), measured with a dedicated spiral microphone array with MEMS microphones, was also performed. The detection and tracking algorithms were implemented based on spectrograms decomposition and adaptive filters. In this research, spectrograms with Cohen class decomposition, log-Mel spectrograms, harmonic-percussive source separation and raw audio waveforms of the audio sample, collected from the spiral microphone array-as an input to the Concurrent Neural Networks were used, in order to determine and classify the number of detected drones in the perimeter of interest.

17.
Sensors (Basel) ; 20(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419315

RESUMO

The purpose of this research was to develop a simple, cost-effective, but enough efficient solution for locating, tracking and distribution analysis of people and/or vehicle flowing, based on non-intrusive Bluetooth sensing and selective filtering algorithms employing artificial intelligence components. The solution provides a tool for analyzing density of targets in a specific area, useful when checking contact proximities of a target along a route. The principle consists of the detection of mobile devices that use active Bluetooth connections, such as personal notebooks, smartphones, smartwatches, Bluetooth headphones, etc. to locate and track their movement in the dedicated area. For this purpose, a specific configuration of three BT sensors is used and RSSI levels compared, based on a combination of differential location estimates. The solution may also be suited for indoor localization where GPS signals are usually weak or missing; for example, in public places such as subway stations or trains, hospitals, airport terminals and so on. The applicability of this solution is estimated to be vast, ranging from travel and transport information services, route guidance, passenger flows tracking, and path recovery for persons suspected to have SARS-COV2 or other contagious viruses, serving epidemiologic enquiries. The specific configuration of Bluetooth detectors may be installed either in a fixed location, or in a public transport vehicle. A set of filters and algorithms for triangulation-based location of detected targets and movement tracking, based on artificial intelligence is employed. When applied in the public transport field, this setup can be also developed to extract additional information on traffic, such as private traffic flowing, or passenger movement patterns along the vehicle route, improved location in absence of GPS signals, etc. Field tests have been carried out for determining different aspects concerning indoor location accuracy, reliability, selection of targets and filtering. Results and possible applications are also presented in the final section of the paper.

18.
Rom J Ophthalmol ; 60(2): 116-119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29450333

RESUMO

Several studies have shown a tight connection between several ocular pathologies and an increased risk of hip fractures due to falling, especially among elderly patients. The total replacement of the hip joint is a major surgical intervention that aims to restore the function of the affected hip by various factors, such as arthritis, injures, and others. A corkscrew-like femoral stem was designed in order to preserve the bone stock and to prevent the occurrence of iatrogenic fractures during the hammering of the implant. In this paper, the finite element analysis for the proposed design was applied, considering different loads and three types of materials. A finite element analysis is a powerful tool to simulate, optimize, design, and select suitable materials for new medical implants. The results showed that the best scenario was for Ti6Al4V alloy, although Ti and 316L stainless steel had a reasonable high safety factor.


Assuntos
Artroplastia de Quadril/instrumentação , Prótese de Quadril , Desenho de Prótese , Titânio , Ligas , Fenômenos Biomecânicos , Fêmur , Análise de Elementos Finitos , Fraturas do Quadril/cirurgia , Humanos , Estresse Mecânico
19.
Rom J Ophthalmol ; 60(3): 132-137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29450337

RESUMO

Contact lenses are an attractive alternative for vision corrections. Their improvement can be achieved by optimizing the geometry, use of new materials, and application of high precision processing technologies. The optimized design can be obtained by computer-aided design, considering the principles of geometrical optics. Inventor Professional and other similar advanced 3D CAD software allows complex approaches, selection of suitable materials with better mechanical/ optical properties. This is useful for the preparation of the virtual design for 3D printing or CNC fabrication. A finite element analysis is also of interest for testing the best design/ material choice. In this paper, the finite element analysis for a tri-curve contact lens was applied. The selected materials were PMMA and polycarbonate. The applied compressive loads were in the range from 10 to 100MPa. Our results showed that the best scenario was for the polycarbonate, but PMMA also had a high safety factor. The maximum compression load with a reasonable safety factor (of 7-9 depending on materials) was 12MPa.


Assuntos
Desenho Assistido por Computador , Lentes de Contato , Análise de Elementos Finitos , Módulo de Elasticidade , Humanos , Cimento de Policarboxilato , Polimetil Metacrilato , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA