Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2310264121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319963

RESUMO

Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.


Assuntos
Artrite , Azacitidina , Camundongos , Animais , Decitabina/farmacologia , Azacitidina/farmacologia , Epigênese Genética , Metilação de DNA , Fatores Reguladores de Interferon/metabolismo , Inflamação/genética , Artrite/genética , Anti-Inflamatórios , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
2.
Clin Cancer Res ; 30(7): 1409-1421, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939112

RESUMO

PURPOSE: Our goal was to demonstrate that lymphatic drainage fluid (lymph) has improved sensitivity in quantifying postoperative minimal residual disease (MRD) in locally advanced human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) compared with plasma, and leverage this novel biofluid for patient risk stratification. EXPERIMENTAL DESIGN: We prospectively collected lymph samples from neck drains of 106 patients with HPV (+) OPSCC, along with 67 matched plasma samples, 24 hours after surgery. PCR and next-generation sequencing were used to quantify cancer-associated cell-free HPV (cf-HPV) and tumor-informed variants in lymph and plasma. Next, lymph cf-HPV and variants were compared with TNM stage, extranodal extension (ENE), and composite definitions of high-risk pathology. We then created a machine learning model, informed by lymph MRD and clinicopathologic features, to compare with progression-free survival (PFS). RESULTS: Postoperative lymph was enriched with cf-HPV compared with plasma (P < 0.0001) and correlated with pN2 stage (P = 0.003), ENE (P < 0.0001), and trial-defined pathologic risk criteria (mean AUC = 0.78). In addition, the lymph mutation number and variant allele frequency were higher in pN2 ENE (+) necks than in pN1 ENE (+) (P = 0.03, P = 0.02) or pN0-N1 ENE (-) (P = 0.04, P = 0.03, respectively). The lymph MRD-informed risk model demonstrated inferior PFS in high-risk patients (AUC = 0.96, P < 0.0001). CONCLUSIONS: Variant and cf-HPV quantification, performed in 24-hour postoperative lymph samples, reflects single- and multifeature high-risk pathologic criteria. Incorporating lymphatic MRD and clinicopathologic feature analysis can stratify PFS early after surgery in patients with HPV (+) head and neck cancer. See related commentary by Shannon and Iyer, p. 1223.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/cirurgia , Neoplasia Residual/patologia , Prognóstico , Estadiamento de Neoplasias , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/cirurgia , Neoplasias Orofaríngeas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Estudos Retrospectivos
3.
NPJ Precis Oncol ; 7(1): 100, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783809

RESUMO

The optimal treatment paradigm for patients with oligometastatic non-small cell lung cancer (NSCLC) remains unclear. Some patients with oligometastatic disease experience prolonged remission after locally consolidative radiation therapy (RT), while others harbor micrometastatic disease (below limits of detection by imaging) and benefit from systemic therapy. To risk-stratify and identify the patients most likely to benefit from locally consolidative RT, we performed a multi-institutional cohort study of 1487 patients with oligometastatic NSCLC undergoing liquid biopsy analysis of circulating tumor DNA (ctDNA). In total, 1880 liquid biopsies were performed and approximately 20% of patients (n = 309) had ctDNA measured prior to RT and after their diagnosis of oligometastatic disease. Patients with undetectable ctDNA (pathogenic or likely pathogenic variants in plasma using the Tempus xF assay) before RT had significantly improved progression-free survival (PFS) (P = 0.004) and overall survival (OS) (P = 0.030). ctDNA maximum variant allele frequency (VAF) pre-RT and ctDNA mutational burden pre-RT were both significantly inversely correlated with PFS (maximum VAF P = 0.008, mutational burden P = 0.003) and OS (maximum VAF P = 0.007, mutational burden P = 0.045). These findings were corroborated by multivariate Cox proportional hazards models that included eight additional clinical and genomic parameters. Overall, these data suggest that in patients with oligometastatic NSCLC, pre-RT ctDNA can potentially identify the patients most likely to benefit from locally consolidative RT and experience prolonged PFS and OS. Similarly, ctDNA may be useful to identify undiagnosed micrometastatic disease where it may be appropriate to prioritize systemic therapies.

4.
Semin Radiat Oncol ; 33(3): 262-278, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331781

RESUMO

Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.


Assuntos
DNA Tumoral Circulante , Neoplasias , Radioterapia (Especialidade) , Masculino , Humanos , DNA Tumoral Circulante/genética , Leucócitos Mononucleares , Neoplasias/genética , Neoplasias/radioterapia , Biópsia Líquida , Biomarcadores Tumorais/genética , Neoplasia Residual/radioterapia
5.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37349125

RESUMO

Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.


Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Genômica
6.
Res Sq ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993328

RESUMO

The optimal treatment for patients with oligometastatic non-small cell lung cancer (NSCLC) remains unclear. Some patients with oligometastatic disease can experience prolonged remission after locally consolidative radiation therapy (RT), while others harbor micrometastatic disease (below current limits of detection by imaging) that may benefit from further prioritization of systemic therapy. To better risk-stratify this population and identify the patients most likely to benefit from locally consolidative radiation therapy, we performed a multi-institutional cohort study of patients with oligometastatic NSCLC undergoing liquid biopsy analysis of circulating tumor DNA (ctDNA). Among this real-world cohort of 1,487 patients undergoing analysis (using the Tempus xF assay), a total of 1,880 ctDNA liquid biopsies along with paired clinical data were obtained across various timepoints. Approximately 20% (n=309) of patients had ctDNA obtained prior to RT and after their diagnosis of oligometastatic disease. Samples were de-identified and analyzed for mutational burden and variant frequencies of detectable deleterious (or likely deleterious) mutations in plasma. Patients with undetectable ctDNA before RT had significantly improved progression-free survival and overall survival compared to patients with detectable ctDNA prior to RT. In patients that received RT, 598 pathogenic (or likely deleterious) variants were identified. ctDNA mutational burden pre-RT and ctDNA maximum variant allele frequency (VAF) pre-RT were both significantly inversely correlated with both progression-free (P = 0.0031 for mutational burden, P = 0.0084 for maximum VAF) and overall survival (P = 0.045 for mutational burden, P = 0.0073 for maximum VAF). Patients without detectable ctDNA prior to RT had significantly improved progression-free survival (P = 0.004) and overall survival (P = 0.03) compared to patients with detectable ctDNA prior to RT. These data suggest that in patients with oligometastatic NSCLC, pre-radiotherapy ctDNA analysis can potentially identify the patients most likely to benefit from locally consolidative RT and experience prolonged progression-free and overall survival. Similarly, ctDNA may be useful to identify those patients with undiagnosed micrometastatic disease, in whom it may be appropriate to prioritize systemic therapy.

7.
Proc Natl Acad Sci U S A ; 113(51): 14805-14810, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27911843

RESUMO

The gut microbiota impacts many aspects of host biology including immune function. One hypothesis is that microbial communities induce epigenetic changes with accompanying alterations in chromatin accessibility, providing a mechanism that allows a community to have sustained host effects even in the face of its structural or functional variation. We used Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to define chromatin accessibility in predicted enhancer regions of intestinal αß+ and γδ+ intraepithelial lymphocytes purified from germ-free mice, their conventionally raised (CONV-R) counterparts, and mice reared germ free and then colonized with CONV-R gut microbiota at the end of the suckling-weaning transition. Characterizing genes adjacent to traditional enhancers and super-enhancers revealed signaling networks, metabolic pathways, and enhancer-associated transcription factors affected by the microbiota. Our results support the notion that epigenetic modifications help define microbial community-affiliated functional features of host immune cell lineages.


Assuntos
Elementos Facilitadores Genéticos , Microbioma Gastrointestinal , Intestinos/microbiologia , Linfócitos Intraepiteliais/microbiologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem da Célula , Cromatina/química , Cromatina/metabolismo , Vida Livre de Germes , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Sci Transl Med ; 8(366): 366ra164, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881825

RESUMO

To model how interactions among enteropathogens and gut microbial community members contribute to undernutrition, we colonized gnotobiotic mice fed representative Bangladeshi diets with sequenced bacterial strains cultured from the fecal microbiota of two 24-month-old Bangladeshi children: one healthy and the other underweight. The undernourished donor's bacterial collection contained an enterotoxigenic Bacteroides fragilis strain (ETBF), whereas the healthy donor's bacterial collection contained two nontoxigenic strains of B. fragilis (NTBF). Analyses of mice harboring either the unmanipulated culture collections or systematically manipulated versions revealed that ETBF was causally related to weight loss in the context of its native community but not when introduced into the healthy donor's community. This phenotype was transmissible from the dams to their offspring and was associated with derangements in host energy metabolism manifested by impaired tricarboxylic acid cycle activity and decreased acyl-coenzyme A utilization. NTBF reduced ETBF's expression of its enterotoxin and mitigated the effects of ETBF on the transcriptomes of other healthy donor community members. These results illustrate how intraspecific (ETBF-NTBF) and interspecific interactions influence the effects of harboring B. fragilis.


Assuntos
Transtornos da Nutrição Infantil/microbiologia , Microbioma Gastrointestinal , Animais , Bacteroides fragilis/isolamento & purificação , Bangladesh , Caquexia/microbiologia , Pré-Escolar , Dieta , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes/genética , Humanos , Lactente , Masculino , Camundongos , Fenótipo
10.
Nat Rev Microbiol ; 10(9): 607-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22864264

RESUMO

Over the past decade, researchers have begun to characterize viral diversity using metagenomic methods. These studies have shown that viruses, the majority of which infect bacteria, are probably the most genetically diverse components of the biosphere. Here, we briefly review the incipient rise of a phage biology renaissance, which has been catalysed by advances in next-generation sequencing. We explore how work characterizing phage diversity and lifestyles in the human gut is changing our view of ourselves as supra-organisms. Finally, we discuss how a renewed appreciation of phage dynamics may yield new applications for phage therapies designed to manipulate the structure and functions of our gut microbiomes.


Assuntos
Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Biodiversidade , Biota , Trato Gastrointestinal/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções Bacterianas/terapia , Bacteriófagos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Terapias Complementares/métodos , Trato Gastrointestinal/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA