Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38828721

RESUMO

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Assuntos
Macrófagos , Fagocitose , Receptores Imunológicos , Humanos , Animais , Camundongos , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Antígenos de Diferenciação/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno CD47/imunologia , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Front Immunol ; 11: 1981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983136

RESUMO

Induction of an effective tumor immunity is a complex process that includes the appropriate presentation of the tumor antigens, activation of specific T cells, and the elimination of malignant cells. Potent and efficient T cell activation is dependent on multiple factors, such as timely expression of co-stimulatory molecules, the differentiation state of professional antigen presenting cells (e.g., dendritic cells; DCs), the functionality of the antigen processing and presentation machinery (APPM), and the repertoire of HLA class I and II-bound peptides (termed immunopeptidome) presented to T cells. So far, how molecular perturbations underlying DCs maturation and differentiation affect the in vivo cross-presented HLA class I and II immunopeptidomes is largely unknown. Yet, this knowledge is crucial for further development of DC-based immunotherapy approaches. We applied a state-of-the-art sensitive MS-based immunopeptidomics approach to characterize the naturally presented HLA-I and -II immunopeptidomes eluted from autologous immune cells having distinct functional and biological states including CD14+ monocytes, immature DC (ImmDC) and mature DC (MaDC) monocyte-derived DCs and naive or activated T and B cells. We revealed a presentation of significantly longer HLA peptides upon activation that is HLA allotype specific. This was apparent in the self-peptidome upon cell activation and in the context of presentation of exogenously loaded antigens, suggesting that peptide length is an important feature with potential implications on the rational design of anti-cancer vaccines.


Assuntos
Apresentação de Antígeno , Antígenos HLA/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Peptídeos/imunologia , Sequência de Aminoácidos , Biomarcadores , Cromatografia Líquida , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos HLA/química , Humanos , Sistema Imunitário/citologia , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligantes , Peptídeos/síntese química , Peptídeos/química , Espectrometria de Massas em Tandem
3.
Front Immunol ; 10: 2115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555299

RESUMO

The efficacy of T cells depends on their functional avidity, i. e., the strength of T cell interaction with cells presenting cognate antigen. The overall T cell response is composed of multiple T cell clonotypes, involving different T cell receptors and variable levels of functional avidity. Recently, it has been proposed that the presence of low avidity tumor antigen-specific CD8 T cells hinder their high avidity counterparts to protect from tumor growth. Here we analyzed human cytotoxic CD8 T cells specific for the melanoma antigen Melan-A/MART-1. We found that the presence of low avidity T cells did not result in reduced cytotoxicity of tumor cells, nor reduced cytokine production, by high avidity T cells. In vivo in NSG-HLA-A2 mice, the anti-tumor effect of high avidity T cells was similar in presence or absence of low avidity T cells. These data indicate that low avidity T cells are not hindering anti-tumor T cell responses, a finding that is reassuring because low avidity T cells are an integrated part of natural T cell responses.


Assuntos
Afinidade de Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Melanoma/imunologia , Animais , Citotoxicidade Imunológica/imunologia , Xenoenxertos , Humanos , Antígeno MART-1/imunologia , Camundongos , Células Tumorais Cultivadas
4.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849366

RESUMO

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Mitocôndrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/metabolismo , Compostos de Piridínio
5.
Sci Transl Med ; 10(436)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643231

RESUMO

We conducted a pilot clinical trial testing a personalized vaccine generated by autologous dendritic cells (DCs) pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which was injected intranodally in platinum-treated, immunotherapy-naïve, recurrent ovarian cancer patients. OCDC was administered alone (cohort 1, n = 5), in combination with bevacizumab (cohort 2, n = 10), or bevacizumab plus low-dose intravenous cyclophosphamide (cohort 3, n = 10) until disease progression or vaccine exhaustion. A total of 392 vaccine doses were administered without serious adverse events. Vaccination induced T cell responses to autologous tumor antigen, which were associated with significantly prolonged survival. Vaccination also amplified T cell responses against mutated neoepitopes derived from nonsynonymous somatic tumor mutations, and this included priming of T cells against previously unrecognized neoepitopes, as well as novel T cell clones of markedly higher avidity against previously recognized neoepitopes. We conclude that the use of oxidized whole-tumor lysate DC vaccine is safe and effective in eliciting a broad antitumor immunity, including private neoantigens, and warrants further clinical testing.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Neoplasias Ovarianas/terapia , Antígenos de Neoplasias/imunologia , Bevacizumab/uso terapêutico , Ciclofosfamida/uso terapêutico , Células Dendríticas/metabolismo , Feminino , Humanos , Mutação/genética , Neoplasias Ovarianas/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
6.
Oncoimmunology ; 5(2): e1073882, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27057438

RESUMO

In experimental mouse models of cancer, increasingly compelling evidence point toward a contribution of tumor associated macrophages (TAM) to tumor lymphangiogenesis. Corresponding experimental observations in human cancer remain scarce although lymphatic metastasis is widely recognized as a predominant route for tumor spread. We previously showed that, in malignant tumors of untreated breast cancer (BC) patients, TIE-2-expressing monocytes (TEM) are highly proangiogenic immunosuppressive cells and that TIE-2 and VEGFR signaling pathways drive TEM immunosuppressive function. We report here that, in human BC, TEM express the canonical lymphatic markers LYVE-1, Podoplanin, VEGFR-3 and PROX-1. Critically, both TEM acquisition of lymphatic markers and insertion into lymphatic vessels were observed in tumors but not in adjacent non-neoplastic tissues, suggesting that the tumor microenvironment shapes both TEM phenotype and spatial distribution. We assessed the lymphangiogenic activity of TEM isolated from dissociated primary breast tumors in vitro and in vivo using endothelial cells (EC) sprouting assay and corneal vascularization assay, respectively. We show that, in addition to their known hemangiogenic function, TEM isolated from breast tumor display a lymphangiogenic activity. Importantly, TIE-2 and VEGFR pathways display variable contributions to TEM angiogenic and lymphangiogenic activities across BC patients; however, combination of TIE-2 and VEGFR kinase inhibitors abrogated these activities and overcame inter-patient variability. These results highlight the direct contribution of tumor TEM to the breast tumor lymphatic network and suggest a combined use of TIE-2 and VEGFR kinase inhibitors as a therapeutic approach to block hem- and lymphangiogenesis in BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA