Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487758

RESUMO

Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid ß-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the ß-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in ß-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that ß-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Leishmania major/enzimologia , Leishmania major/genética , Sequência de Aminoácidos , Animais , Ácidos Graxos Dessaturases/genética , Feminino , Leishmania major/crescimento & desenvolvimento , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Filogenia
2.
Cell Oncol (Dordr) ; 41(5): 505-516, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30047091

RESUMO

PURPOSE: Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS: Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS: We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION: The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inositol/análogos & derivados , Fator de Ativação de Plaquetas/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Inositol/farmacologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Células MCF-7 , Fator de Ativação de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Anal Chem ; 90(13): 8154-8161, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870219

RESUMO

We report the direct probing of the molecular composition of Leishmania-infected macrophage cells in vitro by surface-enhanced Raman scattering (SERS). The microscopic mapping data indicate local abundance and distribution of molecular species that are very characteristic of the infection and that are observed here simultaneously. As revealed by electron microscopy, the gold nanoprobes used for SERS microspectrosopy have access to the parasitophorous vacuoles (PV) through the endosomal system. SERS nanoprobes located in the direct proximity to the parasite, in the greater volume of the PV, and in endolysosomal compartments in other cellular regions, respectively, report a characteristic chemical composition for each respective location. The data enable assessment of the distribution of ergosterol and cholesterol in the amastigote stage of the parasite and its immediate surroundings in the vacuole. Proteophosphoglycans of parasite origin, an important hallmark of the infection, are identified throughout the PV.


Assuntos
Leishmania/fisiologia , Microscopia , Análise Espectral Raman , Animais , Sobrevivência Celular , Ouro/química , Leishmania/isolamento & purificação , Macrófagos/parasitologia , Nanopartículas Metálicas/química , Camundongos
4.
Int J Med Microbiol ; 308(1): 68-76, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28927848

RESUMO

Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.


Assuntos
Leishmania/metabolismo , Macrófagos/parasitologia , Fagossomos/química , Proteômica , Animais , Humanos , Leishmania/química , Leishmania/crescimento & desenvolvimento , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Lisossomos/química , Lisossomos/metabolismo , Lisossomos/parasitologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Fagossomos/parasitologia , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo
5.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28349644

RESUMO

Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses.


Assuntos
Colesterol/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Vacúolos/metabolismo , Vacúolos/parasitologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Modelos Animais de Doenças , Leishmaniose/parasitologia , Leishmaniose/patologia , Camundongos Endogâmicos CBA
6.
Anticancer Agents Med Chem ; 14(4): 607-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628240

RESUMO

Synthetic alkylphospholipids (APLs), exhibit similarity to the platelet-activating factor (PAF). These compounds have antiproliferative effects on tumour cells and can therefore be regarded as a new class of drugs. Unlike classic cytostatic agents, synthetic alkylphospholipids do not interfere with the DNA or the mitotic spindle apparatus. Instead, due to their aliphatic character, alkylphospholipids accumulate in cell membranes, where they have an impact on lipid metabolism and lipid-dependent signalling pathways which leads to inhibition of proliferation and induction of apoptosis in malignant cells. Normal cells remain unaffected by these compounds. Glycosidated phospholipids, are a novel class of alkylphospholipids, in which carbohydrates or carbohydrate-related molecules are introduced in the chemical lead of PAF. These hybrid alkylphospholipids also exhibit anti-proliferative capacity. Furthermore, members of this subfamily also modulate cell adhesion, differentiation, apoptosis and migration of tumour cells. Among the members of this group, Inositol-C2-platelet-activating factor (Ino-C2-PAF) is the most effective compound developed so far. Recently, we also showed that Ino-C2-PAF exhibited the strongest impact on the gene expression levels of immortalised keratinocytes in comparison to edelfosine and another glycosidated alkylphospholipid, Glucose-platelet-activating factor (Glc-PAF). Furthermore, Ino-C2-PAF reduced the expression of genes encoding proteins associated with inflammation and the innate and acquired immune responses.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Fosfolipídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Expressão Gênica/efeitos dos fármacos , Glicosilação , Humanos , Inositol/análogos & derivados , Inositol/química , Inositol/metabolismo , Inositol/farmacologia , Inositol/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/uso terapêutico , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/química , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/uso terapêutico
7.
Biochem Pharmacol ; 87(3): 477-88, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24291779

RESUMO

In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inositol/análogos & derivados , Queratinócitos/efeitos dos fármacos , Fator de Ativação de Plaquetas/análogos & derivados , Imunidade Adaptativa/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/metabolismo , Técnicas de Cultura de Células , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/metabolismo , Inositol/farmacologia , Fator de Ativação de Plaquetas/farmacologia , Análise Serial de Proteínas
8.
Pharmacogenet Genomics ; 21(7): 375-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21681147

RESUMO

OBJECTIVE: New alkylphospholipids (APLs) that are structurally derived from the platelet-activating factor (PAF) are promising candidates for anticancer treatment. After incorporation into cell membranes, APLs are able to interfere with a wide variety of key enzymes implicated in cell growth, motility, invasion, and apoptosis. In addition to the prototype 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine), we presented a novel group of APLs, the glycosidated phospholipids that efficiently inhibit cell proliferation. Two members of this group, Ino-C2-PAF and Glc-PAF, display high efficacy and low cytotoxicity in immortalized nontumorigenic skin keratinocyte cell line, HaCaT. This study investigated the impact of APLs on the transcription of the whole genome. MATERIALS AND METHODS: Using Agilent complementary DNA microarray technology, we compared global gene expression profiles of HaCaT cells treated with edelfosine, Ino-C2-PAF, or Glc-PAF with the profile of control cells. RESULTS: We found that Ino-C2-PAF has the strongest influence on gene expression in comparison with edelfosine and Glc-PAF. Gene Ontology analysis showed that differentially expressed transcripts regulated by the three APLs are mainly implicated in lipid metabolism, lipid biosynthesis, cell differentiation, cell development, and ion homeostasis. Nevertheless, the most remarkable finding is represented by the ability of Ino-C2-PAF to downregulate a broad spectrum of genes associated with the regulation of the innate and acquired immune response and of genes linked to inflammation. CONCLUSION: These results identify Ino-C2-PAF as the most effective APL used in this study. Therefore, Ino-C2-PAF might be a promising compound for further studies that concentrate on the inhibition of inflammatory responses.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/genética , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Queratinócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Éteres Fosfolipídicos/farmacologia , Transcrição Gênica/efeitos dos fármacos
9.
Apoptosis ; 16(6): 636-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21437721

RESUMO

Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis. Here, we show that this drug induces apoptosis through proteins of the death receptor pathway, which leads to an activation of the intrinsic apoptotic pathway. Apoptosis induced by Ino-C2-PAF and its glucosidated derivate, Glc-PAF, was dependent on the DISC components FADD and caspase-8. This can be inhibited in FADD--/-- and caspase-8--/-- cells, in which the breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of caspase-9, -8 and -3 do not occur. In addition, the overexpression of crmA, c-Flip or dominant negative FADD as well as treatment with the caspase-8 inhibitor z-IETD-fmk protected against Ino-C2-PAF-induced apoptosis. Apoptosis proceeds in the absence of CD95/Fas-ligand expression and is independent of blockade of a putative death-ligand/receptor interaction. Furthermore, apoptosis cannot be inhibited in CD95/Fas--/-- Jurkat cells. Expression of Bcl-2 in either the mitochondria or the endoplasmic reticulum (ER) strongly inhibited Ino-C2-PAF- and Glc-PAF-induced apoptosis. In conclusion, Ino-C2-PAF and Glc-PAF trigger a CD95/Fas ligand- and receptor-independent atypical DISC that relies on the intrinsic apoptotic pathway via the ER and the mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Mitocôndrias/metabolismo , Neoplasias/fisiopatologia , Fosfolipídeos/farmacologia , Transdução de Sinais , Caspase 8/genética , Ativação Enzimática/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas/genética , Glicosilação , Humanos , Células Jurkat , Mitocôndrias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosfolipídeos/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
Biochem Pharmacol ; 81(8): 985-95, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21320472

RESUMO

New alkyl-phospholipids that are structurally derived from platelet-activating factor are promising candidates for anticancer treatment. The mechanism of action of derivatives of the platelet-activating factor is distinctly different from that of known DNA- or tubulin-targeting anticancer agents because they are incorporated into cell membranes, where they accumulate and interfere with a wide variety of key enzymes. We recently presented evidence of a novel group of alkyl-phospholipids, glycosidated phospholipids that efficiently inhibit cell proliferation. One member of this group, inositol-C2-PAF (Ino-C2-PAF), displays high efficacy and low cytotoxicity in HaCaT-cells, an immortalized non-tumorigenic skin keratinocyte cell line. Here, we show that Ino-C2-PAF also inhibits the motility of the skin-derived transformed cell lines HaCaT and squamous cell carcinoma (SCC)-25. This decrease in motility is accompanied by an altered F-actin cytoskeleton, increased clustering of integrins, and increased cell-matrix adhesion. Despite enhanced integrin clustering and matrix adhesion, we observed less phosphorylation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and Src, key regulators of cellular motility, at focal adhesion sites. Transient transfection of constitutively active variants of FAK and Src could at least in part bybass this inhibitory effect of Ino-C2-PAF. This fact indicates that Ino-C2-PAF interferes with the fine-tuned balance between adhesion and migration. Ino-C2-PAF at least partially uncouples integrin-mediated attachment from subsequent integrin-dependent signaling steps, which inhibits migration in transformed keratinocyte cell lines.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Integrinas/metabolismo , Queratinócitos/efeitos dos fármacos , Éteres Fosfolipídicos/farmacologia , Quinases da Família src/metabolismo , Western Blotting , Adesão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citometria de Fluxo , Humanos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Fosforilação , Transdução de Sinais
11.
Br J Pharmacol ; 160(1): 36-47, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20331609

RESUMO

Cell expansion and metastasis are considered hallmarks of tumour progression. Therefore, efforts have been made to develop novel anti-cancer drugs that inhibit both the proliferation and the motility of tumour cells. Synthetic alkylphospholipids, compounds with aliphatic side chains that are ether linked to a glycerol backbone, are structurally derived from platelet-activating factor and represent a new class of drugs with anti-proliferative properties in tumour cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell. Instead, they are incorporated into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signalling pathways. Recently, it has been shown that the most commonly studied alkylphospholipids inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected. This review focuses on a novel group of synthetic alkylphospholipids, the glycosidated phospholipids, which contain carbohydrates or carbohydrate-related molecules at the sn-2 position of the glycerol backbone. Members of this subfamily also exhibit anti-proliferative capacity and modulate the cell adhesion, differentiation, and migration of tumour cells. Among this group, Ino-C2-PAF shows the highest efficacy and low cytotoxicity. Apart from its anti-proliferative effect, Ino-C2-PAF strongly reduces cell motility via its inhibitory effect on the phosphorylation of the cytosolic tyrosine kinases FAK and Src. Signalling pathways under the control of the FAK/Src complex are normally required for both migration and proliferation and play a prominent role in tumour progression. We intend to highlight the potential of glycosidated phospholipids, especially Ino-C2-PAF, as a promising new group of drugs for the treatment of hyperproliferative and migration-based skin diseases.


Assuntos
Antineoplásicos/farmacologia , Glicosídeos/farmacologia , Fosfolipídeos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glicosídeos/efeitos adversos , Humanos , Inositol/efeitos adversos , Inositol/análogos & derivados , Inositol/farmacologia , Estrutura Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfolipídeos/efeitos adversos , Fator de Ativação de Plaquetas/efeitos adversos , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/farmacologia , Transdução de Sinais
12.
J Bacteriol ; 188(2): 733-44, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16385063

RESUMO

Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont, possesses a heme uptake system encoded by the gene cluster hmuVUT-hmuR-exbBD-tonB. Transcription of the divergently oriented hmuT and hmuR genes was previously found to be induced by iron limitation and to depend on a 21-bp promoter-upstream iron control element (ICE). Here, we show by deletion analysis that the full-length ICE is needed for this type of positive control. Additional genes associated with ICE-like motifs were identified in the B. japonicum genome, of which bll6680 and blr7895 code for bacterioferritin and rubrerythrin homologs, respectively. Transcription start site mapping revealed that their ICEs directly overlap with either the -10 promoter region or the transcription initiation site, suggesting an involvement of the ICE in negative control of both genes. Consistent with this inference was the observed down-regulation of both genes under iron limitation, which in the case of bll6680 was shown to require an intact ICE motif. Using a yeast one-hybrid system, we demonstrated in vivo interaction of the iron response regulator (Irr) with all three ICEs. Moreover, specific in vitro binding of purified Irr protein to the ICE motifs of bll6680 and blr7895 was shown in electrophoretic mobility shift experiments. A genome-wide survey for iron-regulated genes with a custom-made Affymetrix gene chip revealed 17 genes to be induced and 68 to be repressed under iron-replete conditions. Remarkably, ICE-like motifs are associated with a large subset of those B. japonicum genes. We propose the ICE as an important cis-acting element in B. japonicum which represents the DNA-binding site for the Irr protein and, depending on its location within promoter regions, is involved in positive or negative control of the associated iron-regulated genes.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Ferro , Regulon , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Bradyrhizobium/metabolismo , DNA Bacteriano/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA