Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791532

RESUMO

The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions. It was established that a fluorinated cardo copolyimide (FCPI) based on 2,2-bis-(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 9,9-bis-(4-aminophenyl)fluorene and 2,2-bis-(4-aminophenyl)hexafluoropropane (1.00:0.75:0.25 mol) has excellent solubility in di(met)acrylates. This made it possible to prepare solutions of FCPI in such monomers, to study the effect of FCPI on the kinetics of their photopolymerization in situ and the properties of the resulting polymers. According to the obtained data, the solutions of FCPI (23 wt.%) in 1,4-butanediol diacrylate (BDDA) and FCPI (15 wt.%) in tetraethylene glycol diacrylate were tested for the formation of the primary protective coatings of the silica optical fibers. It was found that the new coating of poly(BDDA-FCPI23%) can withstand prolonged annealing at 200 °C (72 h), which is comparable or superior to the known most thermally stable photo-curable coatings. The proposed approach can be applied to obtain other functional materials.


Assuntos
Fibras Ópticas , Polimerização , Dióxido de Silício , Dióxido de Silício/química , Solubilidade , Imidas/química , Temperatura , Acrilatos/química , Polímeros/química , Halogenação , Processos Fotoquímicos
2.
Opt Lett ; 48(13): 3603-3606, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390191

RESUMO

Femtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different: without coupling, seven individual lines corresponding to the in-core FBG reflection spectra sum up into a broad (0.22 nm) total spectrum, whereas the multiline spectrum collapses into a single narrow line at strong coupling. The developed model shows that the coupled-core laser generates coherent superposition of supermodes at the wavelength corresponding to the geometric mean of the individual FBG spectra, whereas the generated laser line broadens, with a power (0.04-0.12 nm) like the single-core mode of a seven-times larger effective area.

3.
Sci Rep ; 10(1): 14487, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879379

RESUMO

Specially designed composite heavily Er3+-doped fiber in combination with unique point-by-point inscription technology by femtosecond pulses at 1,026 nm enables formation of distributed-feedback (DFB) laser with ultra-short cavity length of 5.3 mm whose parameters are comparable and even better than those for conventional Er3+-doped fiber DFB lasers having much longer cavity. The composite fiber was fabricated by melting rare-earth doped phosphate glass in silica tube. The ultra-short DFB laser generates single-polarization single-frequency radiation at 1,550 nm with narrow linewidth (3.5 kHz) and 0.5 mW output power at 600 mW 980-nm pumping. The same fiber with conventional CW UV (244 nm) inscription technology using phase mask enables fabrication of 40-mm long DFB laser with > 18 mW output power at 3.3% pump conversion, which is a record efficiency for Er3+-doped fiber DFB lasers. The developed technologies form an advanced platform for Er3+-doped fiber DFB lasers operating around 1.55 µm with excellent output characteristics and unique practical features, in particular, the ultra-short DFB lasers are attractive for sensing applications.

4.
Opt Express ; 27(26): 38421-38434, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878610

RESUMO

The paper presents a novel three-dimensional quasi-continuous shape sensor based on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a polyimide protective coating. The measured bending sensitivity of individual FBGs ranges from 0.046 nm/m-1 to 0.049 nm/m-1. It is shown that the sensor allows for reconstructing 2- and 3-dimensional shapes with high accuracy. Due to the high value of the core aperture and individual calibration of each FBG we were able to measure the smallest reported bending radii down to 2.6 mm with a record accuracy of ∼1%. Moreover, we investigate the magnitude of the errors of curves reconstruction and errors associated with measurement of curvature radii in the range from 2.6 to 500 mm. The main factors affecting the accuracy of measurements are also discussed. The temperature resistance of both the inscribed FBG structures and of the protective coating, along with the high mechanical strength of the polyimide, makes it possible to use the sensor in harsh environments or in medical and composite material applications.

5.
Opt Express ; 25(22): 26958-26972, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092178

RESUMO

We demonstrate a novel amplification regime in a counter-pumped, relatively long (2 meters), large mode area, highly Yb-doped and polarization-maintaining tapered fiber, which offers a high peak power directly from the amplifier. The main feature of this regime is that the amplifying signal propagates through a thin part of the tapered fiber without amplification and experiences an extremely high gain in the thick part of the tapered fiber, where most of the pump power is absorbed. In this regime, we have demonstrated 8 ps pulse amplification to a peak power of up to 0.76 MW, which is limited by appearance of stimulated Raman scattering. In the same regime, 28 ps chirped pulses are amplified to a peak power of 0.35 MW directly from the amplifier and then compressed with 70% efficiency to 315 ± 10 fs, corresponding to an estimated peak power of 22 MW.

6.
Opt Express ; 20(26): B118-23, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262841

RESUMO

An ArF excimer laser was used to fabricate Bragg gratings in fibers with Bi-SiO(2) core and microstructured or F-doped claddings without fiber presensitization. Average and modulated refractive index changes of 2.7 × 10(-4) and 1.0 × 10(-4) were induced in pristine microstructured fiber while 1.0 × 10(-4) and 0.7 × 10(-4) were observed in the F-doped-cladding fiber. Fiber luminescence was also measured under 1064 nm pumping for both fibers. Photosensitivity and luminescence were compared to a Bi-Al(2)O(3)-SiO(2) core optical fiber.

7.
Opt Express ; 20(21): 23186-200, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188284

RESUMO

The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO(2)) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO(2) core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, T(max) = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of reduction of a part of the bismuth ions to Bi(0) and their following aggregation. The growth of background losses occurs owing to the increase of the concentration and the size of the metallic bismuth nanoparticles.


Assuntos
Bismuto/química , Vidro/química , Nanopartículas Metálicas/química , Fibras Ópticas , Dióxido de Silício/química , Raios Infravermelhos , Luz , Espalhamento de Radiação
8.
Opt Lett ; 34(17): 2581-3, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19724496

RESUMO

A photonic crystal fiber with a germanosilicate core having a nonlinear coefficient of 40 (W km)(-1) near the single dispersion zero at 1.09 microm is fabricated and studied. Broadband parametric wavelength conversion of the Ti:sapphire laser output tunable at 0.8 microm to the 1.55 microm band is obtained at 1.064 microm cw pump. The tuning of the converted signal in the 300 nm range was first realized without variation of the pump wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA