Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496668

RESUMO

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

2.
Brain ; 145(11): 3859-3871, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35953082

RESUMO

One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Estudos Retrospectivos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Epilepsias Parciais/diagnóstico por imagem
3.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
4.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
5.
Neurology ; 98(2): e152-e163, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675097

RESUMO

BACKGROUND AND OBJECTIVES: To identify white matter fiber tracts that exhibit structural abnormality in patients with bottom-of-sulcus dysplasia (BOSD) and investigate their association with seizure activity. METHODS: Whole-brain fixel-based analysis of diffusion MRI data was performed to identify white matter fiber tracts with significant reductions in fiber density and cross-section in patients with BOSD (n = 20) when compared to healthy control participants (n = 40). Results from whole-brain analysis were used to investigate the association of fiber tract abnormality with seizure frequency and epilepsy duration. RESULTS: Despite the focal nature of the dysplasia, patients with BOSD showed widespread abnormality in white matter fiber tracts, including the bilateral corticospinal, corticothalamic, and cerebellothalamic tracts, superior longitudinal fasciculi, corpus callosum (body), and the forceps major. This pattern of bilateral connectivity reduction was not related to the laterality of the lesion. Exploratory post hoc analyses showed that high seizure frequency was associated with greater reduction in fiber density at the forceps major, bilateral corticospinal, and cerebellothalamic tracts. DISCUSSION: We demonstrate evidence of a bilaterally distributed, specific white matter network that is vulnerable to disruption in BOSD. The degree of tract abnormality is partly related to seizure activity, but additional contributors such as the genetic background and effects of treatment or environment have not been excluded.


Assuntos
Epilepsia , Substância Branca , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Epilepsia/complicações , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
Epilepsia ; 63(1): 61-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845719

RESUMO

OBJECTIVE: Drug-resistant focal epilepsy is often caused by focal cortical dysplasias (FCDs). The distribution of these lesions across the cerebral cortex and the impact of lesion location on clinical presentation and surgical outcome are largely unknown. We created a neuroimaging cohort of patients with individually mapped FCDs to determine factors associated with lesion location and predictors of postsurgical outcome. METHODS: The MELD (Multi-centre Epilepsy Lesion Detection) project collated a retrospective cohort of 580 patients with epilepsy attributed to FCD from 20 epilepsy centers worldwide. Magnetic resonance imaging-based maps of individual FCDs with accompanying demographic, clinical, and surgical information were collected. We mapped the distribution of FCDs, examined for associations between clinical factors and lesion location, and developed a predictive model of postsurgical seizure freedom. RESULTS: FCDs were nonuniformly distributed, concentrating in the superior frontal sulcus, frontal pole, and temporal pole. Epilepsy onset was typically before the age of 10 years. Earlier epilepsy onset was associated with lesions in primary sensory areas, whereas later epilepsy onset was associated with lesions in association cortices. Lesions in temporal and occipital lobes tended to be larger than frontal lobe lesions. Seizure freedom rates varied with FCD location, from around 30% in visual, motor, and premotor areas to 75% in superior temporal and frontal gyri. The predictive model of postsurgical seizure freedom had a positive predictive value of 70% and negative predictive value of 61%. SIGNIFICANCE: FCD location is an important determinant of its size, the age at epilepsy onset, and the likelihood of seizure freedom postsurgery. Our atlas of lesion locations can be used to guide the radiological search for subtle lesions in individual patients. Our atlas of regional seizure freedom rates and associated predictive model can be used to estimate individual likelihoods of postsurgical seizure freedom. Data-driven atlases and predictive models are essential for evidence-based, precision medicine and risk counseling in epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/cirurgia , Liberdade , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Estudos Retrospectivos , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/cirurgia , Resultado do Tratamento
7.
Neurology ; 97(16): e1571-e1582, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34521691

RESUMO

BACKGROUND AND OBJECTIVE: To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD). METHODS: We used clinically acquired 3-dimensional (3D) T1-weighted and 3D fluid-attenuated inversion recovery MRI of 148 patients (median age 23 years [range 2-55 years]; 47% female) with histologically verified FCD at 9 centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed MRI-negative in 51% of patients, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 cases with FCD (13 ± 10 years). Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy disease tested specificity. RESULTS: Overall sensitivity was 93% (137 of 148 FCD detected) using a leave-one-site-out cross-validation, with an average of 6 false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half, it ranked the highest. Sensitivity in the independent cohort was 83% (19 of 23; average of 5 false positives per patient). Specificity was 89% in healthy and disease controls. DISCUSSION: This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification, this classifier may assist clinicians in adjusting hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for presurgical evaluation of MRI-negative epilepsy. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in patients with epilepsy initially diagnosed as MRI negative.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Neuroimagem/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208365

RESUMO

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Negative effects of age on atrophy further revealed a strong influence of connectome architecture in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided deeper insights into the macroscale features that shape the pathophysiology of common epilepsies.

9.
Neurology ; 92(4): e351-e358, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30587513

RESUMO

OBJECTIVE: To examine cerebral cortex thickness in asymptomatic first-degree relatives of patients with mesial temporal lobe epilepsy (MTLE). METHODS: We investigated 127 asymptomatic first-degree relatives of patients with MTLE due to hippocampal sclerosis (HS) (mean age ± SD = 39.4 ± 13 years) and 203 healthy control individuals (mean age ± SD = 36.0 ± 11 years). Participants underwent a comprehensive clinical evaluation and structural brain MRI at 3 study sites. Images were processed simultaneously at each site using a surface-based morphometry method to quantify global brain measures, hippocampal volumes, and cerebral cortical thickness. Differences in brain measures between relatives of patients and controls were examined using generalized models, while controlling for relevant covariates, including age and sex. RESULTS: None of the asymptomatic first-degree relatives of MTLE + HS patients showed evidence of HS on qualitative image assessments. Compared to the healthy controls, the asymptomatic relatives of patients displayed no significant differences in intracranial volume, average hemispheric surface area, or hippocampal volume. Similarly, no significant cerebral cortical thinning was identified in the relatives of patients. This was consistent across the 3 cohorts. CONCLUSION: Lack of cortical thickness changes in the asymptomatic relatives of patients indicates that the previously characterized MTLE + HS-related cortical thinning is not heritable, and is likely driven by disease-related factors. This finding therefore argues for early and aggressive intervention in patients with medically intractable epilepsy.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Família , Adulto , Estudos de Coortes , Epilepsia do Lobo Temporal/etiologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose/complicações , Estatísticas não Paramétricas
10.
Brain ; 141(2): 391-408, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365066

RESUMO

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia/patologia , Adulto , Encéfalo/patologia , Correlação de Dados , Estudos Transversais , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto
11.
Brain ; 140(4): 998-1010, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334998

RESUMO

Epileptic spikes occur on the sub-second timescale and are known to involve not only epileptic foci but also large-scale distributed brain networks. There is likely to be a sequence of neural activity in multiple brain regions that occurs within the duration of a single spike, but standard electroencephalography-functional magnetic resonance imaging analyses, which use only the timing of the spikes to model the functional magnetic resonance imaging data, cannot determine the sequence of these activations. Our aim in this study is to temporally resolve these spatial activations to observe the spatiotemporal dynamics of the spike-related neural activity at a sub-second timescale. We studied eight focal epilepsy patients (age 11-42 years, six female) and used amplitude features of the electroencephalogram specific to different spike components (early and late peaks and troughs) to encode temporal information into our functional magnetic resonance imaging models. This enables us to associate each activation with a specific model of each of the spike components to infer the temporal order of these spike-related spatial activations. In seven of eight patients the distributed networks were associated with the late spike component. The focal activations were more variably coupled with time epochs, but tended to precede the distributed network effects. We also found that incorporating electroencephalogram features into the models increased sensitivity and in six patients revealed additional regions unseen in the standard analysis result. This included strong bilateral thalamus activation in two patients. We demonstrate the clinical utility of this approach in a patient who recently underwent a successful surgical resection of the region where we saw enhanced activation using electroencephalogram amplitude information specific to the early spike component. This focal cluster of activation was larger and more precisely tracked the anatomy compared to what was seen using the standard timing-based analysis. Our novel electroencephalography-functional magnetic resonance imaging data fusion approach, which utilizes information based on the single spike variability across all electroencephalogram channels, has the potential to help us better understand epileptic networks and aid in the interpretation of functional magnetic resonance imaging activation maps during treatment planning.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Anatômicos , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Adulto Jovem
12.
J Neuroimaging ; 26(1): 109-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26094850

RESUMO

Changes in hardware or image-processing settings are a common issue for large multicenter studies. To pool MRI data acquired under these changed conditions, it is necessary to demonstrate that the changes do not affect MRI-based measurements. In these circumstances, classical inference testing is inappropriate because it is designed to detect differences, not prove similarity. We used a method known as statistical equivalence testing to address this limitation. Equivalence testing was carried out on 3 datasets: (1) cortical thickness and automated hippocampal volume estimates obtained from healthy individuals imaged using different multichannel head coils; (2) manual hippocampal volumetry obtained using two readers; and (3) corpus callosum area estimates obtained using an automated method with manual cleanup carried out by two readers. Equivalence testing was carried out using the "two one-sided tests" (TOST) approach. Power analyses of the TOST were used to estimate sample sizes required for well-powered equivalence testing analyses. Mean and standard deviation estimates from the automated hippocampal volume dataset were used to carry out an example power analysis. Cortical thickness values were found to be equivalent over 61% of the cortex when different head coils were used (q < .05, false discovery rate correction). Automated hippocampal volume estimates obtained using the same two coils were statistically equivalent (TOST P = 4.28 × 10(-15) ). Manual hippocampal volume estimates obtained using two readers were not statistically equivalent (TOST P = .97). The use of different readers to carry out limited correction of automated corpus callosum segmentations yielded equivalent area estimates (TOST P = 1.28 × 10(-14) ). Power analysis of simulated and automated hippocampal volume data demonstrated that the equivalence margin affects the number of subjects required for well-powered equivalence tests. We have presented a statistical method for determining if morphometric measures obtained under variable conditions can be pooled. The equivalence testing technique is applicable for analyses in which experimental conditions vary over the course of the study.


Assuntos
Corpo Caloso/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Feminino , Humanos , Glicoproteínas de Membrana , Tamanho do Órgão , Receptores de Interleucina-1 , Reprodutibilidade dos Testes , Software
13.
Neurology ; 84(20): 2021-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25888556

RESUMO

OBJECTIVE: To determine clinical and EEG features that might help identify patients with epilepsy harboring small, intrinsically epileptogenic, surgically treatable, bottom-of-sulcus dysplasias (BOSDs). METHODS: Retrospective review of clinical records, EEG, MRI, and histopathology in 32 patients with drug-resistant epilepsy and MRI-positive (72% 3.0 tesla), pathologically proven (type 2B cortical dysplasia) BOSDs operated at our centers during 2005-2013. RESULTS: Localization of BOSDs was frontal in 19, insula in 5, parietal in 5, and temporal in 3, on the convexity or interhemispheric surfaces. BOSDs were missed on initial MRI at our centers in 22% of patients. Patients presented with focal seizures during infancy in 9, preschool years in 15, and school years in 8 (median age 5 years). Seizures were stereotyped, predominantly nocturnal, and typically nonconvulsive, with semiology referable to the fronto-central or perisylvian regions. Seizures occurred at high frequency during active periods, but often went into prolonged remission with carbamazepine or phenytoin. Intellect was normal or borderline, except in patients with seizure onset during infancy. Scalp EEG frequently revealed localized interictal epileptiform discharges and ictal rhythms. Patients underwent lesionectomy (median age 14 years) guided by electrocorticography and MRI, with prior intracranial EEG monitoring in only one patient. Twenty-eight patients (88%) became seizure-free, and 20 discontinued antiepileptic medication (median follow-up 4.1 years). CONCLUSIONS: In patients with cryptogenic focal epilepsy, this clinical presentation and course should prompt review of or repeat MRI, looking for a BOSD in the frontal, parietal, or insula cortex. If a BOSD is identified, the patient might be considered for single-stage lesionectomy.


Assuntos
Encéfalo/patologia , Epilepsias Parciais/patologia , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia , Epilepsias Parciais/etiologia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/fisiopatologia , Malformações do Desenvolvimento Cortical/cirurgia , Estudos Retrospectivos
14.
Epilepsia ; 53(2): e21-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22050242

RESUMO

Sudden unexpected death in epilepsy (SUDEP) has on rare occasions occurred during electroencephalography (EEG) telemetry, and in such cases postictal EEG suppression (PI EEG-SUP) was frequently observed. More recently a retrospective case-control study reported this pattern as a risk factor for SUDEP. We retrospectively audited frequency and electroclinical features of this pattern as well as immediate management following tonic-clonic seizures during telemetry. Forty-eight patients with tonic-clonic seizures were identified from 470 consecutive EEG-videotelemetry reports. Thirteen patients (27%) with PI EEG-SUP (mean duration 38.1 s, range 6-69 s, median 38 s) were compared to 12 randomly selected controls. One seizure was analyzed per individual. Those with PI EEG-SUP were significantly more likely to be motionless after the seizure and have simple nursing interventions performed (suction, oxygen administration, placed in recovery position, vital signs checked). This pattern is relatively common and requires further study as a potential marker for increased mortality in epilepsy.


Assuntos
Morte Súbita , Eletroencefalografia , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Telemetria , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Morte Súbita/etiologia , Epilepsia/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Convulsões/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA