Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(7): e4699, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313648

RESUMO

Intein enzymes catalyze the splicing of their flanking polypeptide chains and have found tremendous biotechnological applications. Their terminal residues form the catalytic core and participate in the splicing reaction. Hence, the neighboring N- and C-terminal extein residues influence the catalytic rate. As these extein residues vary depending on the substrate identity, we tested the influence of 20 amino acids at these sites in the Spl DnaX intein and observed significant variation of spliced product as well as N- and C-terminus cleavage product formation. We investigated the dependence of these reactions on the extein residues by molecular dynamics (MD) simulations on eight extein variants, and found that the conformational sampling of the active-site residues of the intein enzyme differed among these extein variants. We found that the extein variants that sample higher population of near-attack conformers (NACs) of the active-site residues undergo higher product formation in our activity assays. Ground state conformers that closely resemble the transition state are referred to as NACs. Very good correlation was observed between the NAC populations from the MD simulations of eight extein variants and the corresponding product formation from our activity assays. Furthermore, this molecular detail enabled us to elucidate the mechanistic roles of several conserved active-site residues in the splicing reaction. Overall, this study shows that the catalytic power of Spl DnaX intein enzyme, and most likely other inteins, depends on the efficiency of formation of NACs in the ground state, which is further modulated by the extein residues.


Assuntos
Exteínas , Inteínas , Domínio Catalítico , Processamento de Proteína , Aminoácidos
2.
NPJ Parkinsons Dis ; 8(1): 66, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650269

RESUMO

Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA