Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35327359

RESUMO

Innate immunity is critical for immediate recognition and elimination of invading pathogens or defense against cancer cell growth. Dysregulation of innate immune systems is associated with the pathogenesis of different types of inflammatory diseases, including cancer. In addition, the maintenance of innate immune cells' genomic integrity is crucial for the survival of all organisms. Oxidative stress generated from innate immune cells may cause self-inflicted DNA base lesions as well as DNA damage on others neighboring cells, including cancer cells. Oxidative DNA base damage is predominantly repaired by base excision repair (BER). BER process different types of DNA base lesions that are presented in cancer and innate immune cells to maintain genomic integrity. However, mutations in BER genes lead to impaired DNA repair function and cause insufficient genomic integrity. Moreover, several studies have implicated that accumulation of DNA damage leads to chromosomal instability that likely activates the innate immune signaling. Furthermore, dysregulation of BER factors in cancer cells modulate the infiltration of innate immune cells to the tumor microenvironment. In the current review, the role of BER in cancer and innate immune cells and its impact on innate immune signaling within the tumor microenvironment is summarized. This is a special issue that focuses on DNA damage and cancer therapy to demonstrate how BER inhibitor or aberrant repair modulates innate inflammatory response and impact immunotherapy approaches. Overall, the review provides substantial evidence to understand the impact of BER in innate immune response dynamics within the current immune-based therapeutic strategy.

2.
J Alzheimers Dis ; 85(2): 889-903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34897095

RESUMO

BACKGROUND: Infections by bacterial or viral agents have been hypothesized to influence the etiology of neurodegenerative diseases. OBJECTIVE: This study examined the potential presence of Borrelia burgdorferi spirochete, the causative agent of Lyme disease, in brain autopsy tissue of patients diagnosed with either Alzheimer's (AD) or Parkinson's diseases. METHODS: Brain tissue sections from patients with age-matched controls were evaluated for antigen and DNA presence of B. burgdorferi using various methods. Positive Borrelia structures were evaluated for co-localization with biofilm and AD markers such as amyloid and phospho-tau (p-Tau) using immunohistochemical methods. RESULTS: The results showed the presence of B. burgdorferi antigen and DNA in patients with AD pathology and among those, one of them was previously diagnosed with Lyme disease. Interestingly, a significant number of Borrelia-positive aggregates with a known biofilm marker, alginate, were found along with the spirochetal structures. Our immunohistochemical data also showed that Borrelia-positive aggregates co-localized with amyloid and phospho-tau markers. To further prove the potential relationship of B. burgdorferi and amyloids, we infected two mammalian cell lines with B. burgdorferi which resulted in a significant increase in the expression of amyloid-ß and p-Tau proteins in both cells lines post-infection. CONCLUSION: These results indicate that B. burgdorferi can be found in AD brain tissues, not just in spirochete but a known antibiotics resistant biofilm form, and its co-localized amyloid markers. In summary, this study provides evidence for a likely association between B. burgdorferi infections and biofilm formation, AD pathology, and chronic neurodegenerative diseases.


Assuntos
Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Borrelia burgdorferi/isolamento & purificação , Encéfalo/microbiologia , Encéfalo/patologia , Idoso , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/patologia , Biofilmes/efeitos dos fármacos , Biomarcadores/metabolismo , Borrelia burgdorferi/genética , Linhagem Celular Tumoral , DNA Bacteriano , Humanos , Neuroborreliose de Lyme/complicações , Proteínas tau/metabolismo
3.
DNA Repair (Amst) ; 105: 103152, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186496

RESUMO

The Polb gene encodes DNA polymerase beta (Pol ß), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol ß-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol ß-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol ß during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.


Assuntos
DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Lúpus Eritematoso Sistêmico/enzimologia , Mutação , Estresse Oxidativo , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Polimerase beta/genética , Modelos Animais de Doenças , Deleção de Genes , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos
4.
Antibiotics (Basel) ; 9(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824942

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.

5.
Antibiotics (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466166

RESUMO

Outer membrane vesicles (OMVs) are spherical bodies containing proteins and nucleic acids that are released by Gram-negative bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. The functional relationship between B. burgdorferi OMVs and host neuron homeostasis is not well understood. The objective of this study was to examine how B. burgdorferi OMVs impact the host cell environment. First, an in vitro model was established by co-culturing human BE2C neuroblastoma cells with B. burgdorferi B31. B. burgdorferi was able to invade BE2C cells within 24 h. Despite internalization, BE2C cell viability and levels of apoptosis remained unchanged, but resulted in dramatically increased production of MCP-1 and MCP-2 cytokines. Elevated secretion of MCP-1 has previously been associated with changes in oxidative stress. BE2C cell mitochondrial superoxides were reduced as early as 30 min after exposure to B. burgdorferi and OMVs. To rule out whether BE2C cell antioxidant response is the cause of decline in superoxides, superoxide dismutase 2 (SOD2) gene expression was assessed. SOD2 expression was reduced upon exposure to B. burgdorferi, suggesting that B. burgdorferi might be responsible for superoxide reduction. These results suggest that B. burgdorferi modulates cell antioxidant defense and immune system reaction in response to the bacterial infection. In summary, these results show that B. burgdorferi OMVs serve to directly counter superoxide production in BE2C neurons, thereby 'priming' the host environment to support B. burgdorferi colonization.

6.
PLoS One ; 9(6): e99127, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24921943

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.


Assuntos
Centro Germinativo/imunologia , Ativação Linfocitária , PPAR gama/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , PPAR gama/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Sirtuína 1/genética , Sirtuína 1/metabolismo
7.
Cell Rep ; 6(1): 1-8, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24388753

RESUMO

A replication study of a previous genome-wide association study (GWAS) suggested that a SNP linked to the POLB gene is associated with systemic lupus erythematosus (SLE). This SNP is correlated with decreased expression of Pol ß, a key enzyme in the base excision repair (BER) pathway. To determine whether decreased Pol ß activity results in SLE, we constructed a mouse model of POLB that encodes an enzyme with slow DNA polymerase activity. We show that mice expressing this hypomorphic POLB allele develop an autoimmune pathology that strongly resembles SLE. Of note, the mutant mice have shorter immunoglobulin heavy-chain junctions and somatic hypermutation is dramatically increased. These results demonstrate that decreased Pol ß activity during the generation of immune diversity leads to lupus-like disease in mice, and suggest that decreased expression of Pol ß in humans is an underlying cause of SLE.


Assuntos
DNA Polimerase beta/genética , Lúpus Eritematoso Sistêmico/genética , Mutação de Sentido Incorreto , Animais , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Recombinação V(D)J
8.
Mutat Res ; 743-744: 12-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23195996

RESUMO

The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.


Assuntos
Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Timina/metabolismo , Animais , Humanos , Mutação
9.
Proc Natl Acad Sci U S A ; 109(17): 6632-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493258

RESUMO

DNA is susceptible to damage by a wide variety of chemical agents that are generated either as byproducts of cellular metabolism or exposure to man-made and harmful environments. Therefore, to maintain genomic integrity, having reliable DNA repair systems is important. DNA polymerase ß is known to be a key player in the base excision repair pathway, and mice devoid of DNA polymerase beta do not live beyond a few hours after birth. In this study, we characterized mice harboring an impaired pol ß variant. This Y265C pol ß variant exhibits slow DNA polymerase activity but WT lyase activity and has been shown to be a mutator polymerase. Mice expressing Y265C pol ß are born at normal Mendelian ratios. However, they are small, and 60% die within a few hours after birth. Slow proliferation and significantly increased levels of cell death are observed in many organs of the E14 homozygous embryos compared with WT littermates. Mouse embryo fibroblasts prepared from the Y265C pol ß embryos proliferate at a rate slower than WT cells and exhibit a gap-filling deficiency during base excision repair. As a result of this, chromosomal aberrations and single- and double-strand breaks are present at significantly higher levels in the homozygous mutant versus WT mouse embryo fibroblasts. This is study in mice is unique in that two enzymatic activities of pol ß have been separated; the data clearly demonstrate that the DNA polymerase activity of pol ß is essential for survival and genome stability.


Assuntos
DNA Polimerase beta/genética , Reparo do DNA , Sobrevida , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proliferação de Células , Células Cultivadas , Aberrações Cromossômicas , Primers do DNA , Citometria de Fluxo , Técnicas de Introdução de Genes , Homozigoto , Metanossulfonato de Metila/farmacologia , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
10.
Genome Integr ; 1(1): 2, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20678256

RESUMO

Escherichia coli (E. coli) are commonly used as hosts for DNA cloning and sequencing. Upon transformation of E. coli with recombined vector carrying a gene of interest, the bacteria multiply the gene of interest while maintaining the integrity of its content. During the subcloning of a mouse genomic fragment into a plasmid vector, we noticed that the size of the insert increased significantly upon replication in E. coli. The sequence of the insert was determined and found to contain a novel DNA sequence within the mouse genomic insert. A BLAST search of GenBank revealed the novel sequence to be that of the Insertion Sequence 2 (IS2) element from E. coli that was likely inserted during replication in that organism. Importantly, a detailed search of GenBank shows that the IS2 is present within many eukaryotic nucleotide sequences, and in many cases, has been annotated as being part of the protein. The results of this study suggest that one must perform additional careful analysis of the sequence results using BLAST comparisons, and further verification of gene annotation before submission into the GenBank.

11.
BMC Evol Biol ; 9: 303, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20043855

RESUMO

BACKGROUND: Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life. RESULTS: To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites. CONCLUSIONS: These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.


Assuntos
Evolução Molecular , Inteínas , Íntrons , Processamento de Proteína , Sítios de Splice de RNA , Sequência Conservada , Splicing de RNA
12.
Int J Biol Sci ; 3(4): 205-11, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17389927

RESUMO

Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn(2+) and not Mg(2+) metal cations for activity.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Inteínas , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Domínio Catalítico , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Manganês/metabolismo , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
13.
Annu Rev Microbiol ; 56: 263-87, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12142479

RESUMO

Inteins are genetic elements that disrupt the coding sequence of genes. However, in contrast to introns, inteins are transcribed and translated together with their host protein. Inteins appear most frequently in Archaea, but they are found in organisms belonging to all three domains of life and in viral and phage proteins. Most inteins consist of two domains: One is involved in autocatalytic splicing, and the other is an endonuclease that is important in the spread of inteins. This review focuses on the evolution and technical application of inteins and only briefly summarizes recent advances in the study of the catalytic activities and structures of inteins. In particular, this review considers inteins as selfish or parasitic genetic elements, a point of view that explains many otherwise puzzling aspects of inteins.


Assuntos
Endonucleases/genética , Íntrons/genética , Íntrons/fisiologia , Peptídeo Sintases/genética , Processamento de Proteína/genética , Motivos de Aminoácidos , Archaea/química , Evolução Molecular , Modelos Biológicos , Filogenia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA